The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PubChem7452     (3,4-dimethoxyphenyl)methanol

Synonyms: SureCN119395, NSC-6317, AG-H-80621, ACMC-20978c, CHEBI:62150, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on VERATRYL ALCOHOL

 

Associations of VERATRYL ALCOHOL with other chemical compounds

  • Lignin peroxidases (LiP) from the white-rot fungus Phanerochaete chrysosporium oxidize veratryl alcohol (VA) by two electrons to veratryl aldehyde, although the VA cation radical (VA.+) is an intermediate [Khindaria, A., et al. (1995) Biochemistry 34, 6020-6025] [6].
  • A charge neutralization mutation in the "classical heme edge" substrate access channel of LiP, in which Glu146 was substituted by Gly (E146G LiPH8), showed substantial activity with respect to veratryl alcohol (VA) oxidation and a marked (2.4 pH units) increase in pKa for the oxidation of a negatively charged difluoroazo dye [7].
  • However, in this case, we detected (by ESR spin-trapping) the production of carbon dioxide anion radical (CO2.-) and perhydroxyl radical (.OOH) in reaction mixtures containing LiP, oxalate, veratryl alcohol, H2O2, and O2 [8].
  • The B. adusta and Pleurotus eryngii MnP isoenzymes are unusual because of their ability to oxidize aromatic compounds like 2,6-dimethoxyphenol and veratryl alcohol in the absence of Mn2+ [9].
  • Compound I reduction by veratryl alcohol showed saturation kinetics, which contrasts with the situation observed when Compound I is derived from a penta-coordinate ferric state [10].
 

Gene context of VERATRYL ALCOHOL

  • The reaction product ferricytochrome c inhibited VA oxidation by LiP in a noncompetitive manner, suggesting that cytochrome c binds to LiP at a site different from the small aromatic substrate binding site [11].
  • In the presence of H2O2 and an electron donor, veratryl alcohol, lignin peroxidases exhibit spectral shifts analogous to those of animal catalase (EC 1.11.1.6) [12].
  • Furthermore, it was found that omission of veratryl alcohol addition to the culture did not affect the levels of the L18-related transcripts in carbon-limited cultures [13].
  • The LiP-catalyzed polymerization of RNase in strictly dependent on the presence of veratryl alcohol (VA) [14].
  • The importance of the veratryl alcohol cation radical (VA.+) in the conversion of LiP compound III to active enzyme has been previously examined (D.P. Barr and S.D. Aust, 1994, Arch. Biochem. Biophys. 311, 378-382) [15].
 

Analytical, diagnostic and therapeutic context of VERATRYL ALCOHOL

References

  1. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase. Benen, J.A., Sánchez-Torres, P., Wagemaker, M.J., Fraaije, M.W., van Berkel, W.J., Visser, J. J. Biol. Chem. (1998) [Pubmed]
  2. Oxidation of 4-methoxymandelic acid by lignin peroxidase. Mediation by veratryl alcohol. Tien, M., Ma, D. J. Biol. Chem. (1997) [Pubmed]
  3. Lifetime and reactivity of the veratryl alcohol radical cation. Implications for lignin peroxidase catalysis. Candeias, L.P., Harvey, P.J. J. Biol. Chem. (1995) [Pubmed]
  4. On the mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 by EDTA. Shah, M.M., Grover, T.A., Barr, D.P., Aust, S.D. J. Biol. Chem. (1992) [Pubmed]
  5. Reactions of lignin peroxidase compounds I and II with veratryl alcohol. Transient-state kinetic characterization. Wariishi, H., Huang, J., Dunford, H.B., Gold, M.H. J. Biol. Chem. (1991) [Pubmed]
  6. Detection and characterization of the lignin peroxidase compound II-veratryl alcohol cation radical complex. Khindaria, A., Nie, G., Aust, S.D. Biochemistry (1997) [Pubmed]
  7. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Doyle, W.A., Blodig, W., Veitch, N.C., Piontek, K., Smith, A.T. Biochemistry (1998) [Pubmed]
  8. Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Popp, J.L., Kalyanaraman, B., Kirk, T.K. Biochemistry (1990) [Pubmed]
  9. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Heinfling, A., Martínez, M.J., Martínez, A.T., Bergbauer, M., Szewzyk, U. Appl. Environ. Microbiol. (1998) [Pubmed]
  10. Spectrophotometric investigations with hexa-coordinate ferric lignin peroxidase: does water retention at the active site influence catalysis? Brück, T.B., Harvey, P.J. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  11. Oxidation of ferrocytochrome c by lignin peroxidase. Wariishi, H., Sheng, D., Gold, M.H. Biochemistry (1994) [Pubmed]
  12. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Niku-Paavola, M.L., Karhunen, E., Salola, P., Raunio, V. Biochem. J. (1988) [Pubmed]
  13. Methods to investigate the expression of lignin peroxidase genes by the white rot fungus Phanerochaete chrysosporium. Reiser, J., Walther, I.S., Fraefel, C., Fiechter, A. Appl. Environ. Microbiol. (1993) [Pubmed]
  14. Oxidative polymerization of ribonuclease A by lignin peroxidase from Phanerochaete chrysosporium. Role of veratryl alcohol in polymer oxidation. Sheng, D., Gold, M.H. Eur. J. Biochem. (1999) [Pubmed]
  15. The role of oxalate in lignin peroxidase-catalyzed reduction: protection from compound III accumulation. Goodwin, D.C., Barr, D.P., Aust, S.D., Grover, T.A. Arch. Biochem. Biophys. (1994) [Pubmed]
  16. Lignin peroxidase compound III. Mechanism of formation and decomposition. Wariishi, H., Gold, M.H. J. Biol. Chem. (1990) [Pubmed]
  17. The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. Choinowski, T., Blodig, W., Winterhalter, K.H., Piontek, K. J. Mol. Biol. (1999) [Pubmed]
  18. Identification of the veratryl alcohol binding site in lignin peroxidase by site-directed mutagenesis. Ambert-Balay, K., Fuchs, S.M., Tien, M. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  19. Enzymatic determination of veratryl alcohol. Leisola, M.S., Schmidt, B., Fiechter, A. Anal. Biochem. (1986) [Pubmed]
 
WikiGenes - Universities