The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A new alternative non-mevalonate pathway for isoprenoid biosynthesis in eubacteria and plants.

Data concerning the discovery of an alternative non-mevalonate pathway for isoprenoid biosynthesis leading to isopentenyl diphosphate formation are reviewed. This pathway has been discovered in experiments with several eubacteria producing triterpenoids of the hopane series. 13C-labeled acetate, glucose, and triose phosphates were used as precursors. The 13C-labeling patterns in isoprenoids were studied by 13C-NMR spectrometry. In eubacteria the universal C5 precursor--isopentenyl diphosphate--did not appear to form via the classical acetate/mevalonate pathway, but via a novel glyceraldehyde 3-phosphate/pyruvate pathway. It is postulated that the condensation of the C2 unit formed as a result of pyruvate decarboxylation with the C3 unit (glyceraldehyde 3-phosphate) and the next transposition leads to the formation of the branched C5 precursor--isopentenyl diphosphate. In Scenedesmus obliquus not only all plastid isoprenoids (carotenoids and prenyl side chains of chlorophylls and plastoquinone-9) were formed via this novel pathway, but also the non-plastid cytoplasmic sterols. In higher plants the plastid isoprenoids were formed via the glyceraldehyde 3-phosphate/pyruvate pathway, while the cytoplasmic sterols were formed via the acetate/mevalonate pathway.[1]

References

 
WikiGenes - Universities