The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Purification and characterization of NAD:Penicillamine ADP transferase from Bacillus sphaericus. A novel NAD-dependent enzyme catalyzing phosphoramide bond formation.

A strain of Bacillus sphaericus isolated from a local soil sample has been found to use beta,beta-dimethyl-DL-cysteine (DL-penicillamine) as the sole nitrogen source. Crude cell extract of the bacterium showed potent penicillamine-consuming activity only in the presence of NAD, which, however, was not used as an electron acceptor. Characterization of reaction products revealed that penicillamine was derivatized to a phosphoramide adduct with the ADP moiety of NAD, whereas the nicotinamide-ribose group was released and hydrolyzed spontaneously to ribose and nicotinamide. The phosphoramide product, ADP-penicillamine, caused potent product inhibition on the purified enzyme, and adenylate deaminase was found to be effective in converting the inhibitory product into inosine-diphosphate-penicillamine and thereby maintained the catalysis for several hours. The novel enzyme, termed as NAD:penicillamine ADP transferase, showed a single band on SDS-polyacrylamide gel electrophoresis with a mass of approximately 42 kDa. The native enzyme was monomeric. The enzyme showed high substrate specificity to NAD (Km = 13.0 mM) and L-penicillamine (Km = 6.5 mM); other nucleotides such as NADP, NAD(P)H, AMP, ADP, and ADP-ribose did not substitute for NAD, and L-valine, L-cysteine, L-homocysteine, L-cystine, L-leucine, and L-isoleucine did not serve as the substrate. Kinetic studies suggested an Ordered Bi Bi mechanism, with NAD as the first substrate to bind and ADP-L-penicillamine as the last product released. The novel NAD-dependent enzyme may catalyze the first step in penicillamine degradation in the strain of B. sphaericus.[1]

References

 
WikiGenes - Universities