The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hyperargininemia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hyperargininemia

 

High impact information on Hyperargininemia

  • Argininemia results from a deficiency of arginase (EC 3.5.3.1), the last enzyme of the urea cycle in the liver [4].
  • To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, we isolated cDNA clones for human liver arginase [5].
  • These results suggest that L-Cit formed by nNOS in L-Arg-loaded neuronal cells inhibits NOS activity and nNOS in these L-Arg-loaded cells functions as a NADPH oxidase to produce ROS, which may cause neurotoxicity in argininemia [6].
  • Genomic DNAs from 11 patients with argininemia were examined using the polymerase chain reaction, cloning, and sequencing [7].
  • However, whereas the argininemia can be normalized, the catabolites of arginine are still increased [8].
 

Chemical compound and disease context of Hyperargininemia

 

Biological context of Hyperargininemia

 

Anatomical context of Hyperargininemia

 

Gene context of Hyperargininemia

 

Analytical, diagnostic and therapeutic context of Hyperargininemia

References

  1. Three novel mutations in the liver-type arginase gene in three unrelated Japanese patients with argininemia. Uchino, T., Haraguchi, Y., Aparicio, J.M., Mizutani, N., Higashikawa, M., Naitoh, H., Mori, M., Matsuda, I. Am. J. Hum. Genet. (1992) [Pubmed]
  2. Mouse model for human arginase deficiency. Iyer, R.K., Yoo, P.K., Kern, R.M., Rozengurt, N., Tsoa, R., O'Brien, W.E., Yu, H., Grody, W.W., Cederbaum, S.D. Mol. Cell. Biol. (2002) [Pubmed]
  3. The pathobiochemistry of uremia and hyperargininemia further demonstrates a metabolic relationship between urea and guanidinosuccinic acid. Marescau, B., De Deyn, P.P., Qureshi, I.A., De Broe, M.E., Antonozzi, I., Cederbaum, S.D., Cerone, R., Chamoles, N., Gatti, R., Kang, S.S. Metab. Clin. Exp. (1992) [Pubmed]
  4. Molecular basis of argininemia. Identification of two discrete frame-shift deletions in the liver-type arginase gene. Haraguchi, Y., Aparicio, J.M., Takiguchi, M., Akaboshi, I., Yoshino, M., Mori, M., Matsuda, I. J. Clin. Invest. (1990) [Pubmed]
  5. Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Haraguchi, Y., Takiguchi, M., Amaya, Y., Kawamoto, S., Matsuda, I., Mori, M. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  6. High concentration of L-arginine suppresses nitric oxide synthase activity and produces reactive oxygen species in NB9 human neuroblastoma cells. Todoroki, S., Goto, S., Urata, Y., Komatsu, K., Sumikawa, K., Ogura, T., Matsuda, I., Kondo, T. Mol. Med. (1998) [Pubmed]
  7. Molecular basis of phenotypic variation in patients with argininemia. Uchino, T., Snyderman, S.E., Lambert, M., Qureshi, I.A., Shapira, S.K., Sansaricq, C., Smit, L.M., Jakobs, C., Matsuda, I. Hum. Genet. (1995) [Pubmed]
  8. Guanidino compound analysis as a complementary diagnostic parameter for hyperargininemia: follow-up of guanidino compound levels during therapy. Marescau, B., De Deyn, P.P., Lowenthal, A., Qureshi, I.A., Antonozzi, I., Bachmann, C., Cederbaum, S.D., Cerone, R., Chamoles, N., Colombo, J.P. Pediatr. Res. (1990) [Pubmed]
  9. Treatment of hyperargininemia with sodium benzoate and arginine-restricted diet. Qureshi, I.A., Letarte, J., Ouellet, R., Batshaw, M.L., Brusilow, S. J. Pediatr. (1984) [Pubmed]
  10. Lysine supplementation in hyperargininemia. Pardridge, W.M. J. Pediatr. (1977) [Pubmed]
  11. Hyperargininemia: effect of ornithine and lysine supplementation. Kang, S.S., Wong, P.W., Melyn, M.A. J. Pediatr. (1983) [Pubmed]
  12. In vitro effects of L-arginine and guanidino compounds on NTPDase1 and 5'-nucleotidase activities from rat brain synaptosomes. Balz, D., de Souza Wyse, A.T., Morsch, V.M., da Silva, A.C., Vieira, V.L., Morsch, A.L., Schetinger, M.R. Int. J. Dev. Neurosci. (2003) [Pubmed]
  13. Excretion of alpha-keto-delta-guanidinovaleric acid and its cyclic form in patients with hyperargininemia. Marescau, B., Pintens, J., Lowenthal, A., Terheggen, H.G. Clin. Chim. Acta (1979) [Pubmed]
  14. In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia. Wyse, A.T., Bavaresco, C.S., Hagen, M.E., Delwing, D., Wannmacher, C.M., Severo Dutra-Filho, C., Wajner, M. Brain Res. (2001) [Pubmed]
  15. The gene for human liver arginase (ARG1) is assigned to chromosome band 6q23. Sparkes, R.S., Dizikes, G.J., Klisak, I., Grody, W.W., Mohandas, T., Heinzmann, C., Zollman, S., Lusis, A.J., Cederbaum, S.D. Am. J. Hum. Genet. (1986) [Pubmed]
  16. Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. Scaglia, F., Brunetti-Pierri, N., Kleppe, S., Marini, J., Carter, S., Garlick, P., Jahoor, F., O'Brien, W., Lee, B. J. Nutr. (2004) [Pubmed]
  17. Arginase activity in human fibroblast cultures. Konarska, L., Wiesmann, U., Colombo, J.P. Clin. Chim. Acta (1981) [Pubmed]
  18. Hyperargininemia due to liver arginase deficiency. Crombez, E.A., Cederbaum, S.D. Mol. Genet. Metab. (2005) [Pubmed]
  19. Cloning and characterization of the mouse and rat type II arginase genes. Iyer, R.K., Bando, J.M., Jenkinson, C.P., Vockley, J.G., Kim, P.S., Kern, R.M., Cederbaum, S.D., Grody, W.W. Mol. Genet. Metab. (1998) [Pubmed]
  20. Functional consequences of the G235R mutation in liver arginase leading to hyperargininemia. Lavulo, L.T., Emig, F.A., Ash, D.E. Arch. Biochem. Biophys. (2002) [Pubmed]
  21. In vitro inhibition of Na+,K(+)-ATPase activity from rat cerebral cortex by guanidino compounds accumulating in hyperargininemia. da Silva, C.G., Parolo, E., Streck, E.L., Wajner, M., Wannmacher, C.M., Wyse, A.T. Brain Res. (1999) [Pubmed]
  22. Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic acidurias. Bachmann, C., Colombo, J.P. Eur. J. Pediatr. (1980) [Pubmed]
  23. Purification, modification, physico-chemical and pharmacokinetic characterization of arginase, an enzyme of potential use in therapy. Visco, C., Benassi, C.A., Veronese, F.M., Miglioli, P.A. Il Farmaco; edizione scientifica. (1987) [Pubmed]
 
WikiGenes - Universities