The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

homoarginine     (2S)-2-amino-6- (diaminomethylideneamino)he...

Synonyms: L-Homoarginine, AmbotzHAA1225, CHEMBL589752, CHEBI:27747, HMDB00670, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of homoarginine

 

Psychiatry related information on homoarginine

 

High impact information on homoarginine

 

Chemical compound and disease context of homoarginine

 

Biological context of homoarginine

  • Although the present phenotype was stable during long-term culture in regard to the isozyme properties, the original cancer cells from which the cell line had been derived were L-phenylalanine sensitive and moderately L-homoarginine sensitive [13].
  • In water at pH 5.25, 5 degrees C, homoarginine shows an isotope effect k12/k13 = 1.601, indicating that the decarboxylation step is entirely rate determining [14].
  • The addition of 10(-4) or 10(-3) M cationic amino acids (l-ornithine, l-lysine, or l-homoarginine) or neutral amino acids (l-glutamine, l-leucine, or l-serine) to the perfusate decreased NO and increased renal vascular resistance [15].
  • The application of guanidination chemistry, the conversion of lysine into homoarginine residues, is used to illustrate several important general considerations relating to the use of differential isotope labelling for relative quantification in proteomics [16].
  • However, PTA-noraginine was much less susceptible to tryptic hydrolysis that PTA-homoarginine, while the linear esters of norarginine are known to be more susceptible than those of homoarginine [17].
 

Anatomical context of homoarginine

 

Associations of homoarginine with other chemical compounds

 

Gene context of homoarginine

  • Partial purification and properties of a transamidinase from Lathyrus sativus seedlings. Involvement in homoarginine metabolism and amine interconversions [28].
  • L-Homoarginine was not a substrate for liver arginase [29].
  • Serum of cancer patients often contains high activities of a homoarginine-sensitive isoenzyme of alkaline phosphatase with high electrophoretic mobility, which is present in relatively low activities in sera from most normal persons and persons with benign disease [30].
  • 3. L-phenylalanine and L-homoarginine give a major degree of discrimination between liver/bone/kidney ALP on the one hand, and placental and intestinal ALPs on the other [31].
  • Differential inhibition by homoarginine and phenylalanine indicates that butyrate is inducing the liver-bone kidney isozyme that is found in endometrial glands in vivo [32].
 

Analytical, diagnostic and therapeutic context of homoarginine

References

  1. Amniotic fluid alkaline phosphatase isoenzymes in early prenatal diagnosis of cystic fibrosis. Brock, D.J. Lancet (1983) [Pubmed]
  2. Inhibitory effect of L-homoarginine on murine osteosarcoma cell proliferation. Kikuchi, Y., Takagi, M., Parmley, R.T., Ghanta, V.K., Hiramoto, R.N. Cancer Res. (1982) [Pubmed]
  3. Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Vincent, J.P., Schweitz, H., Lazdunski, M. Biochemistry (1975) [Pubmed]
  4. Isoenzymes of alkaline phosphatase in germinoma cells. Koide, O., Iwai, S., Kanno, T., Kanda, S. Am. J. Clin. Pathol. (1988) [Pubmed]
  5. Genetic organization of a cluster of genes involved in the production of phaseolotoxin, a toxin produced by Pseudomonas syringae pv. phaseolicola. Zhang, Y., Rowley, K.B., Patil, S.S. J. Bacteriol. (1993) [Pubmed]
  6. Evaluation of the homoarginine technique for measuring true ileal amino acid digestibilities in pigs fed a barley-canola meal-based diet. Nyachoti, C.M., McNeilage-Van de Wiele, E.M., de Lange, C.F., Gabert, V.M. J. Anim. Sci. (2002) [Pubmed]
  7. Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts. Smith, D.W., Scriver, C.R., Tenenhouse, H.S., Simell, O. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  8. Multiple positive and negative cis-acting elements mediate induced arginase (CAR1) gene expression in Saccharomyces cerevisiae. Kovari, L., Sumrada, R., Kovari, I., Cooper, T.G. Mol. Cell. Biol. (1990) [Pubmed]
  9. A comparison of fast homoarginine-sensitive alkaline phosphatase and carcinoembryonic antigen as markers in colon carcinoma. Larson, F.C., Kahan, L., Tormey, D.C., Davis, T.E. J. Clin. Oncol. (1984) [Pubmed]
  10. Constitutive expression of non-bone/liver/kidney alkaline phosphatase in human osteosarcoma cell lines. Ali, N.N., Rowe, J., Teich, N.M. J. Bone Miner. Res. (1996) [Pubmed]
  11. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase. Moreno-Vivián, C., Soler, G., Castillo, F. Eur. J. Biochem. (1992) [Pubmed]
  12. A hepatoma-associated alkaline phosphatase, the Kasahara isozyme, compared with one of the isozymes of FL amnion cells. Higashino, K., Kudo, S., Otani, R., Yamamura, Y. Ann. N. Y. Acad. Sci. (1975) [Pubmed]
  13. Characterization of liver-type alkaline phosphatase from human gastric carcinoma cells (KMK-2) in vitro. Tokumitsu, S.I., Tokumitsu, K., Kohnoe, K., Takeuchi, T. Cancer Res. (1979) [Pubmed]
  14. Medium effects in enzyme-catalyzed decarboxylations. O'Leary, M.H., Piazza, G.J. Biochemistry (1981) [Pubmed]
  15. Amino acids as modulators of endothelium-derived nitric oxide. Kakoki, M., Kim, H.S., Edgell, C.J., Maeda, N., Smithies, O., Mattson, D.L. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  16. Guanidination chemistry for qualitative and quantitative proteomics. Warwood, S., Mohammed, S., Cristea, I.M., Evans, C., Whetton, A.D., Gaskell, S.J. Rapid Commun. Mass Spectrom. (2006) [Pubmed]
  17. Kinetics of hydrolysis of phenylthiazolones of arginine, homoarginine, norarginine, and canaavanine by trypsin. Ohyama, S., Mizusaki, K., Tsunematsu, H., Makisumi, S. J. Biochem. (1979) [Pubmed]
  18. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. White, M.F., Gazzola, G.C., Christensen, H.N. J. Biol. Chem. (1982) [Pubmed]
  19. The degradation of guanidinated lysozyme in reticulocyte lysate. Chin, D.T., Carlson, N., Kuehl, L., Rechsteiner, M. J. Biol. Chem. (1986) [Pubmed]
  20. Alkaline phosphatase in hematopoietic tumor cell lines of the mouse: high activity in cells of the B lymphoid lineage. Culvenor, J.G., Harris, A.W., Mandel, T.E., Whitelaw, A., Ferber, E. J. Immunol. (1981) [Pubmed]
  21. Stimulus-secretion coupling of arginine-induced insulin release: comparison with lysine-induced insulin secretion. Sener, A., Blachier, F., Rasschaert, J., Mourtada, A., Malaisse-Lagae, F., Malaisse, W.J. Endocrinology (1989) [Pubmed]
  22. Stimulatory effect of arginine on acetylglutamate synthesis in isolated mitochondria of mouse and rat liver. Kawamoto, S., Sonoda, T., Ohtake, A., Tatibana, M. Biochem. J. (1985) [Pubmed]
  23. Induction of alkaline phosphatase in the inflamed intestine: a novel pharmacological target for inflammatory bowel disease. Sánchez de Medina, F., Martínez-Augustin, O., González, R., Ballester, I., Nieto, A., Gálvez, J., Zarzuelo, A. Biochem. Pharmacol. (2004) [Pubmed]
  24. Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter. Martel, F., Martins, M.J., Hipólito-Reis, C., Azevedo, I. Br. J. Pharmacol. (1996) [Pubmed]
  25. Analysis of beta-N-oxalyl-L-alpha,beta-diaminopropionic acid and homoarginine in Lathyrus sativus by capillary zone electrophoresis. Zhao, L., Chen, X., Hu, Z., Li, Q., Chen, Q., Li, Z. Journal of chromatography. A. (1999) [Pubmed]
  26. Isoenzymes of equine alkaline phosphatase. Froscher, B.G., Nagode, L.A. Am. J. Vet. Res. (1979) [Pubmed]
  27. Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Marescau, B., Nagels, G., Possemiers, I., De Broe, M.E., Becaus, I., Billiouw, J.M., Lornoy, W., De Deyn, P.P. Metab. Clin. Exp. (1997) [Pubmed]
  28. Partial purification and properties of a transamidinase from Lathyrus sativus seedlings. Involvement in homoarginine metabolism and amine interconversions. Srivenugopal, K.S., Adiga, P.R. Biochem. J. (1980) [Pubmed]
  29. Purification and properties of arginase from human liver and erythrocytes. Berüter, J., Colombo, J.P., Bachmann, C. Biochem. J. (1978) [Pubmed]
  30. Increased activity in serum of an alkaline phosphatase isoenzyme in cancer: analytical method and preliminary clinical studies. Kahan, L., Go, V.L., Larson, F.C. Clin. Chem. (1981) [Pubmed]
  31. Differential inhibition of the products of the human alkaline phosphatase loci. Mulivor, R.A., Plotkin, L.I., Harris, H. Ann. Hum. Genet. (1978) [Pubmed]
  32. Induction of heat labile alkaline phosphatase by butyrate in differentiating endometrial cells. Fleming, H., Begley, M., Campi, T., Condon, R., Dobyns, K., McDonagh, J., Wallace, S. J. Cell. Biochem. (1995) [Pubmed]
  33. Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Keough, T., Lacey, M.P., Youngquist, R.S. Rapid Commun. Mass Spectrom. (2000) [Pubmed]
  34. Cationic amino acid fluxes beyond the proximal convoluted tubule of rat kidney. Silbernagl, S., Völker, K., Dantzler, W.H. Pflugers Arch. (1994) [Pubmed]
  35. L-homoarginine suppresses exocrine pancreas in rats. Hira, T., Ohyama, S., Hara, H. Amino Acids (2003) [Pubmed]
  36. Purification of human plasma kallikrein and urokinase by affinity chromatography. Tamura, Y., Fujii, S. J. Biochem. (1976) [Pubmed]
  37. The effect of homoarginine on the EEG of rats. Yokoi, I., Toma, J., Mori, A. Neurochemical pathology. (1984) [Pubmed]
 
WikiGenes - Universities