The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Arg1  -  arginase, liver

Mus musculus

Synonyms: AI, AI256583, Arg-1, Arginase-1, Liver-type arginase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Arg1

  • Using cytokine-deficient mice and two granuloma models, we show that induction of Arg-1 is type 2 cytokine dependent [1].
  • Protective role of arginase in a mouse model of colitis [2].
  • Arginase I is hypothesized to play a regulatory and potentially pathogenic role in diseases such as asthma, parasitic, bacterial, and worm infections by modulating NO levels and promoting fibrosis [3].
  • Schistosome eggs induce Arg-1, while Mycobacterium avium-infected mice develop a dominant NOS-2 response [1].
  • Here, we demonstrate the differential regulation of NOS-2 and arginase type 1 (Arg-1) by type 1/type 2 cytokines in vivo and for the first time show a critical role for arginase in the pathogenesis of schistosomiasis [1].

High impact information on Arg1

  • To determine whether these two HDL populations have different effects on atherogenesis, human apoA-I (AI) and human apoA-I and apoA-II (AI/AII) transgenic mice were produced in an atherosclerosis-susceptible strain [4].
  • These studies show that the protein composition of HDL significantly affects its role in atherogenesis and that AI-HDL is more antiatherogenic than AI/AII-HDL [4].
  • Activated macrophages kill tumour cells by releasing arginase [5].
  • In particular, sildenafil, down-regulates arginase 1 and nitric oxide synthase-2 expression, thereby reducing the suppressive machinery of CD11b(+)/Gr-1(+) myeloid-derived suppressor cells (MDSCs) recruited by growing tumors [6].
  • Signaling through the PGE2 receptor E-prostanoid 4 expressed in MSCs induced arginase I [7].

Chemical compound and disease context of Arg1


Biological context of Arg1


Anatomical context of Arg1

  • We show that Arg1 increases superoxide production in myeloid cells through a pathway that likely utilizes the reductase domain of inducible NO synthase (iNOS), and that superoxide is required for Arg1-dependent suppression of T cell function [16].
  • Because Arg1 and iNOS share L-arginine as a common substrate, our results indicate that L-arginine metabolism in myeloid cells is a potential target for selective intervention in reversing myeloid-induced dysfunction in tumor-bearing hosts [16].
  • The activation status of macrophages was analyzed in this model of helminth infection by evaluating the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arg1 [17].
  • The strong AI expression in the peripheral nervous system suggests that the pathogenesis of the neurological retardation in AI deficiency may be conditioned by AI deficiency in the nervous system during embryonic development [15].
  • Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines [9].

Associations of Arg1 with chemical compounds


Regulatory relationships of Arg1

  • IL-4 alters macrophage arginine metabolism by inducing arginase I expression and inhibiting nitric oxide production [21].
  • Lung arginase activity and mRNA expression were strongly induced by IL-4 and IL-13, and were differentially dependent on signal transducer and activator of transcription 6 [18].
  • Similarly, high arginase levels could be induced by supernatants of Th2 cells stimulated in various ways [13].
  • These data indicate that NO and arginase do not participate in the anti-MHV3 state induced by IFN gamma in macrophages [22].
  • Peritonitis increased messenger RNA levels of arginase I and arginase II in controls and SAD mice but with a greater increase in arginase I in SAD than in control mice [23].

Other interactions of Arg1


Analytical, diagnostic and therapeutic context of Arg1


  1. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. Hesse, M., Modolell, M., La Flamme, A.C., Schito, M., Fuentes, J.M., Cheever, A.W., Pearce, E.J., Wynn, T.A. J. Immunol. (2001) [Pubmed]
  2. Protective role of arginase in a mouse model of colitis. Gobert, A.P., Cheng, Y., Akhtar, M., Mersey, B.D., Blumberg, D.R., Cross, R.K., Chaturvedi, R., Drachenberg, C.B., Boucher, J.L., Hacker, A., Casero, R.A., Wilson, K.T. J. Immunol. (2004) [Pubmed]
  3. Enhancer-mediated control of macrophage-specific arginase I expression. Pauleau, A.L., Rutschman, R., Lang, R., Pernis, A., Watowich, S.S., Murray, P.J. J. Immunol. (2004) [Pubmed]
  4. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Schultz, J.R., Verstuyft, J.G., Gong, E.L., Nichols, A.V., Rubin, E.M. Nature (1993) [Pubmed]
  5. Activated macrophages kill tumour cells by releasing arginase. Currie, G.A. Nature (1978) [Pubmed]
  6. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Serafini, P., Meckel, K., Kelso, M., Noonan, K., Califano, J., Koch, W., Dolcetti, L., Bronte, V., Borrello, I. J. Exp. Med. (2006) [Pubmed]
  7. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. Rodriguez, P.C., Hernandez, C.P., Quiceno, D., Dubinett, S.M., Zabaleta, J., Ochoa, J.B., Gilbert, J., Ochoa, A.C. J. Exp. Med. (2005) [Pubmed]
  8. Induction of arginase I and II in bleomycin-induced fibrosis of mouse lung. Endo, M., Oyadomari, S., Terasaki, Y., Takeya, M., Suga, M., Mori, M., Gotoh, T. Am. J. Physiol. Lung Cell Mol. Physiol. (2003) [Pubmed]
  9. Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines. Kern, R.M., Yang, Z., Kim, P.S., Grody, W.W., Iyer, R.K., Cederbaum, S.D. Mol. Genet. Metab. (2007) [Pubmed]
  10. Ornithine deficiency in the arginase double knockout mouse. Deignan, J.L., Livesay, J.C., Yoo, P.K., Goodman, S.I., O'brien, W.E., Iyer, R.K., Cederbaum, S.D., Grody, W.W. Mol. Genet. Metab. (2006) [Pubmed]
  11. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. Bussière, F.I., Chaturvedi, R., Cheng, Y., Gobert, A.P., Asim, M., Blumberg, D.R., Xu, H., Kim, P.Y., Hacker, A., Casero, R.A., Wilson, K.T. J. Biol. Chem. (2005) [Pubmed]
  12. Macrophage arginase regulation by CCAAT/enhancer-binding protein beta. Albina, J.E., Mahoney, E.J., Daley, J.M., Wesche, D.E., Morris, S.M., Reichner, J.S. Shock (2005) [Pubmed]
  13. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. Munder, M., Eichmann, K., Modolell, M. J. Immunol. (1998) [Pubmed]
  14. Helicobacter pylori induces macrophage apoptosis by activation of arginase II. Gobert, A.P., Cheng, Y., Wang, J.Y., Boucher, J.L., Iyer, R.K., Cederbaum, S.D., Casero, R.A., Newton, J.C., Wilson, K.T. J. Immunol. (2002) [Pubmed]
  15. Arginase expression in mouse embryonic development. Yu, H., Iyer, R.K., Yoo, P.K., Kern, R.M., Grody, W.W., Cederbaum, S.D. Mech. Dev. (2002) [Pubmed]
  16. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D.M., Staib, C., Lowel, M., Sutter, G., Colombo, M.P., Zanovello, P. J. Immunol. (2003) [Pubmed]
  17. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Donnelly, S., O'Neill, S.M., Sekiya, M., Mulcahy, G., Dalton, J.P. Infect. Immun. (2005) [Pubmed]
  18. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. Zimmermann, N., King, N.E., Laporte, J., Yang, M., Mishra, A., Pope, S.M., Muntel, E.E., Witte, D.P., Pegg, A.A., Foster, P.S., Hamid, Q., Rothenberg, M.E. J. Clin. Invest. (2003) [Pubmed]
  19. Arginase I induction during Leishmania major infection mediates the development of disease. Iniesta, V., Carcelén, J., Molano, I., Peixoto, P.M., Redondo, E., Parra, P., Mangas, M., Monroy, I., Campo, M.L., Nieto, C.G., Corraliza, I. Infect. Immun. (2005) [Pubmed]
  20. Inducible nitric oxide synthase and arginase expression in heart tissue during acute Trypanosoma cruzi infection in mice: arginase I is expressed in infiltrating CD68+ macrophages. Cuervo, H., Pineda, M.A., Aoki, M.P., Gea, S., Fresno, M., Gironès, N. J. Infect. Dis. (2008) [Pubmed]
  21. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gray, M.J., Poljakovic, M., Kepka-Lenhart, D., Morris, S.M. Gene (2005) [Pubmed]
  22. Anti-MHV3 state induced by IFN gamma in macrophages is not related to arginine metabolism. Pereira, C.A., Soler, G., Modolell, M. Arch. Virol. (1997) [Pubmed]
  23. Decrease in lung nitric oxide production after peritonitis in mice with sickle cell disease. Bartolucci, P., Ngo, M.T., Beuzard, Y., Galactéros, F., Saber, G., Rideau, D., Eddahibi, S., Maitre, B., Adnot, S., Delclaux, C. Crit. Care Med. (2007) [Pubmed]
  24. Widespread expression of arginase I in mouse tissues. Biochemical and physiological implications. Yu, H., Yoo, P.K., Aguirre, C.C., Tsoa, R.W., Kern, R.M., Grody, W.W., Cederbaum, S.D., Iyer, R.K. J. Histochem. Cytochem. (2003) [Pubmed]
  25. Arginase: marker, effector, or candidate gene for asthma? Vercelli, D. J. Clin. Invest. (2003) [Pubmed]
WikiGenes - Universities