The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Arg1  -  arginase 1

Rattus norvegicus

Synonyms: Arginase-1, Liver-type arginase, Type I arginase
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Arg1

  • Reduction of arginase I in BDL livers may be responsible for the lowering of arginine levels in the plasma, while induction of arginase II could be important in regulating NO synthesis as well as other important mechanisms involved in liver cirrhosis [1].
  • These findings suggest that decreased arginase expression in the kidney may be at least partially responsible for the salt-sensitive hypertension in SS rats [2].
  • Functional consequences of the G235R mutation in liver arginase leading to hyperargininemia [3].
  • The regulation of expression of the arginine-recycling enzymes and arginase isoforms in association with inducible nitric oxide synthase (iNOS) in the eye of endotoxin-induced uveitis (EIU) rats is investigated [4].
  • The expression of arginase in normal lung and after sepsis, and its potential relationships with iNOS, however, are not known [5].
 

Psychiatry related information on Arg1

 

High impact information on Arg1

  • In other tissues that lack a complete urea cycle, arginase regulates cellular arginine and ornithine concentrations for biosynthetic reactions, including nitric oxide synthesis: in the macrophage, arginase activity is reciprocally coordinated with that of NO synthase to modulate NO-dependent cytotoxicity [7].
  • Structure of a unique binuclear manganese cluster in arginase [7].
  • The 2.1 angstrom-resolution crystal structure of trimeric rat liver arginase reveals that this unique metal cluster resides at the bottom of an active-site cleft that is 15 angstroms deep [7].
  • The marked effects of L-arginine availability on macrophage functions, together with the knowledge that these cells modify the extracellular arginine concentration in sites of inflammation through arginase, provide evidence for an autoregulatory mechanism of macrophage activation [8].
  • We show that a consequence of elevated cAMP is the synthesis of polyamines, resulting from an up-regulation of Arginase I, a key enzyme in their synthesis [9].
 

Chemical compound and disease context of Arg1

 

Biological context of Arg1

 

Anatomical context of Arg1

  • Age-related changes in nitric oxide synthase and arginase in the rat prefrontal cortex [16].
  • The present study investigates for the first time the regional variations and age-related changes in both NOS and arginase in sub-regions of the hippocampus [17].
  • In young adult rats, although the total NOS activity was not significantly different across the hippocampal CA1, CA2/3 and the dentate gyrus (DG) sub-regions, the total arginase activity showed a clear regional variation with the highest level in DG [17].
  • Thus, arginase I appears to have an important role in down-regulating nitric oxide synthesis in murine macrophages by decreasing the availability of arginine, and the induction of arginase I is mediated by C/EBPbeta [18].
  • Coinduction of nitric-oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide [18].
 

Associations of Arg1 with chemical compounds

 

Regulatory relationships of Arg1

 

Other interactions of Arg1

 

Analytical, diagnostic and therapeutic context of Arg1

References

  1. Induction of arginase II in livers of bile duct-ligated rats. Wei, C.L., Hon, W.M., Lee, K.H., Mori, M., Gotoh, T., Khoo, H.E. Biochem. Pharmacol. (2002) [Pubmed]
  2. Decreased expression of arginase II in the kidneys of Dahl salt-sensitive rats. Iwata, S., Tsujino, T., Ikeda, Y., Ishida, T., Ueyama, T., Gotoh, T., Mori, M., Yokoyama, M. Hypertens. Res. (2002) [Pubmed]
  3. Functional consequences of the G235R mutation in liver arginase leading to hyperargininemia. Lavulo, L.T., Emig, F.A., Ash, D.E. Arch. Biochem. Biophys. (2002) [Pubmed]
  4. Coinduction of nitric oxide synthase and arginine metabolic enzymes in endotoxin-induced uveitis rats. Koga, T., Koshiyama, Y., Gotoh, T., Yonemura, N., Hirata, A., Tanihara, H., Negi, A., Mori, M. Exp. Eye Res. (2002) [Pubmed]
  5. Differential expression of arginase and iNOS in the lung in sepsis. Carraway, M.S., Piantadosi, C.A., Jenkinson, C.P., Huang, Y.C. Exp. Lung Res. (1998) [Pubmed]
  6. Synthesis and evaluation of new omega-borono-alpha-amino acids as rat liver arginase inhibitors. Busnel, O., Carreaux, F., Carboni, B., Pethe, S., Goff, S.V., Mansuy, D., Boucher, J.L. Bioorg. Med. Chem. (2005) [Pubmed]
  7. Structure of a unique binuclear manganese cluster in arginase. Kanyo, Z.F., Scolnick, L.R., Ash, D.E., Christianson, D.W. Nature (1996) [Pubmed]
  8. Regulation of macrophage functions by L-arginine. Albina, J.E., Caldwell, M.D., Henry, W.L., Mills, C.D. J. Exp. Med. (1989) [Pubmed]
  9. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Cai, D., Deng, K., Mellado, W., Lee, J., Ratan, R.R., Filbin, M.T. Neuron (2002) [Pubmed]
  10. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  11. Purification of a multipotent antideath activity from bovine liver and its identification as arginase: nitric oxide-independent inhibition of neuronal apoptosis. Esch, F., Lin, K.I., Hills, A., Zaman, K., Baraban, J.M., Chatterjee, S., Rubin, L., Ash, D.E., Ratan, R.R. J. Neurosci. (1998) [Pubmed]
  12. Determination of the metal ion separation and energies of the three lowest electronic states of dimanganese (II,II) complexes and enzymes: catalase and liver arginase. Khangulov, S.V., Pessiki, P.J., Barynin, V.V., Ash, D.E., Dismukes, G.C. Biochemistry (1995) [Pubmed]
  13. Decreased exhaled nitric oxide as a marker of postinsult immune paralysis. Attalah, H.L., Honoré, S., Eddahibi, S., Marcos, E., Soussy, C.J., Adnot, S., Delclaux, C. J. Appl. Physiol. (2004) [Pubmed]
  14. Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase. Kawamoto, S., Amaya, Y., Murakami, K., Tokunaga, F., Iwanaga, S., Kobayashi, K., Saheki, T., Kimura, S., Mori, M. J. Biol. Chem. (1987) [Pubmed]
  15. In vitro analysis of the rat liver-type arginase promoter. Takiguchi, M., Mori, M. J. Biol. Chem. (1991) [Pubmed]
  16. Age-related changes in nitric oxide synthase and arginase in the rat prefrontal cortex. Liu, P., Smith, P.F., Appleton, I., Darlington, C.L., Bilkey, D.K. Neurobiol. Aging (2004) [Pubmed]
  17. Regional variations and age-related changes in nitric oxide synthase and arginase in the sub-regions of the hippocampus. Liu, P., Smith, P.F., Appleton, I., Darlington, C.L., Bilkey, D.K. Neuroscience (2003) [Pubmed]
  18. Coinduction of nitric-oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide. Sonoki, T., Nagasaki, A., Gotoh, T., Takiguchi, M., Takeya, M., Matsuzaki, H., Mori, M. J. Biol. Chem. (1997) [Pubmed]
  19. Altering the binuclear manganese cluster of arginase diminishes thermostability and catalytic function. Scolnick, L.R., Kanyo, Z.F., Cavalli, R.C., Ash, D.E., Christianson, D.W. Biochemistry (1997) [Pubmed]
  20. Effect of the substance P antagonist spantide on adrenal sympathetic nerve activity in rats. Togashi, H., Yoshioka, M., Minami, M., Shimamura, K., Saito, H., Kitada, C., Fujino, M. Jpn. J. Pharmacol. (1987) [Pubmed]
  21. Asparagine-linked carbohydrate chains of inducible rat parotid proline-rich glycoprotein contain terminal beta-linked N-acetylgalactosamine. Bedi, G.S. Glycoconj. J. (1997) [Pubmed]
  22. IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. Wei, L.H., Jacobs, A.T., Morris, S.M., Ignarro, L.J. Am. J. Physiol., Cell Physiol. (2000) [Pubmed]
  23. Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity. Boutard, V., Havouis, R., Fouqueray, B., Philippe, C., Moulinoux, J.P., Baud, L. J. Immunol. (1995) [Pubmed]
  24. Lysophosphatidylcholine regulates cationic amino acid transport and metabolism in vascular smooth muscle cells. Role in polyamine biosynthesis. Durante, W., Liao, L., Peyton, K.J., Schafer, A.I. J. Biol. Chem. (1997) [Pubmed]
  25. Precocious induction of arginase in primary cultures of fetal rat hepatocytes. Husson, A., Bouazza, M., Buquet, C., Vaillant, R. In vitro. (1984) [Pubmed]
  26. Upregulation of arginase expression in wound-derived fibroblasts. Witte, M.B., Barbul, A., Schick, M.A., Vogt, N., Becker, H.D. J. Surg. Res. (2002) [Pubmed]
  27. Knockdown of arginase I restores NO signaling in the vasculature of old rats. White, A.R., Ryoo, S., Li, D., Champion, H.C., Steppan, J., Wang, D., Nyhan, D., Shoukas, A.A., Hare, J.M., Berkowitz, D.E. Hypertension (2006) [Pubmed]
  28. Glucocorticoids inhibit lipopolysaccharide-induced up-regulation of arginase in rat alveolar macrophages. Klasen, S., Hammermann, R., Fuhrmann, M., Lindemann, D., Beck, K.F., Pfeilschifter, J., Racké, K. Br. J. Pharmacol. (2001) [Pubmed]
  29. Expression and localization of enzymes of arginine metabolism in the rat eye. Koshiyama, Y., Gotoh, T., Miyanaka, K., Kobayashi, T., Negi, A., Mori, M. Curr. Eye Res. (2000) [Pubmed]
  30. Evidence for new spasmogenic substances released by trypsin from plasma of normotensive and hypertensive rats. Beltramini-Sabbag, L.M., Krieger, E.M., Greene, L.J., Reis, M.L. Adv. Exp. Med. Biol. (1986) [Pubmed]
  31. Production of nitric oxide during graft rejection is regulated by the Th1/Th2 balance, the arginase activity, and L-arginine metabolism. Holán, V., Pindjáková, J., Krulová, M., Neuwirth, A., Fric, J., Zajícová, A. Transplantation (2006) [Pubmed]
 
WikiGenes - Universities