The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Pyramidal Tracts

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pyramidal Tracts

 

Psychiatry related information on Pyramidal Tracts

 

High impact information on Pyramidal Tracts

  • AHI1 is most highly expressed in brain, particularly in neurons that give rise to the crossing axons of the corticospinal tract and superior cerebellar peduncles [8].
  • Joubert syndrome is a congenital brain malformation of the cerebellar vermis and brainstem with abnormalities of axonal decussation (crossing in the brain) affecting the corticospinal tract and superior cerebellar peduncles [8].
  • For example, there is a reduction in mossy fiber tracts in the hippocampus of mice that lack NCAM, a requirement for DCC in the response of commissural neurons to a floor plate-derived chemoattractant, and a loss of corticospinal tracts in humans who carry mutations in the L1 gene [9].
  • In contrast, NGF levels were decreased in ALS cerebral motor cortex, where the corticospinal tract originates, but increased in the lateral column of spinal cord, which includes the region of corticospinal tract degeneration in ALS [10].
  • When True blue is injected into the pyramidal decussation during the first postnatal week and the animals are allowed to survive until the fourth postnatal week, the distribution of pyramidal tract neurones is as widespread as in the immediate postnatal period and includes the entire visual cortex [11].
 

Chemical compound and disease context of Pyramidal Tracts

 

Biological context of Pyramidal Tracts

 

Anatomical context of Pyramidal Tracts

 

Associations of Pyramidal Tracts with chemical compounds

  • Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury [26].
  • EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract [27].
  • Within the first week after transplantation, the cut corticospinal axons (identified by anterograde transport of biotin dextran) extended caudally along the axis of the corticospinal tract as single, fine, minimally branched sprouts that ended in a simple tip, often preceded by a small varicosity [28].
  • Recovery of some flexor and extensor movements of the ipsilateral fingers and toes occurred within 6 h of an incision being made in the upper cervical cord that divided the lateral corticospinal tract unilaterally [29].
  • The most marked feature of k maps was their ability to visualize the corticospinal tract, which had elevated k = 3.4-3.8 s(-1) but appeared invisible on f maps [30].
 

Gene context of Pyramidal Tracts

 

Analytical, diagnostic and therapeutic context of Pyramidal Tracts

References

  1. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Eymard-Pierre, E., Lesca, G., Dollet, S., Santorelli, F.M., di Capua, M., Bertini, E., Boespflug-Tanguy, O. Am. J. Hum. Genet. (2002) [Pubmed]
  2. Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc superoxide dismutase gene. Cudkowicz, M.E., McKenna-Yasek, D., Chen, C., Hedley-Whyte, E.T., Brown, R.H. Ann. Neurol. (1998) [Pubmed]
  3. Diffusion-weighted magnetic resonance imaging in boys with neural cell adhesion molecule L1 mutations and congenital hydrocephalus. Graf, W.D., Born, D.E., Shaw, D.W., Thomas, J.R., Holloway, L.W., Michaelis, R.C. Ann. Neurol. (2000) [Pubmed]
  4. Neurological findings in triosephosphate isomerase deficiency. Poll-The, B.T., Aicardi, J., Girot, R., Rosa, R. Ann. Neurol. (1985) [Pubmed]
  5. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Cohen, N.R., Taylor, J.S., Scott, L.B., Guillery, R.W., Soriano, P., Furley, A.J. Curr. Biol. (1998) [Pubmed]
  6. Neuropathologic characteristics of brainstem lesions in sporadic Creutzfeldt-Jakob disease. Iwasaki, Y., Hashizume, Y., Yoshida, M., Kitamoto, T., Sobue, G. Acta Neuropathol. (2005) [Pubmed]
  7. Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? Zühlke, C., Gehlken, U., Hellenbroich, Y., Schwinger, E., Bürk, K. J. Neurol. (2003) [Pubmed]
  8. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Ferland, R.J., Eyaid, W., Collura, R.V., Tully, L.D., Hill, R.S., Al-Nouri, D., Al-Rumayyan, A., Topcu, M., Gascon, G., Bodell, A., Shugart, Y.Y., Ruvolo, M., Walsh, C.A. Nat. Genet. (2004) [Pubmed]
  9. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Walsh, F.S., Doherty, P. Annu. Rev. Cell Dev. Biol. (1997) [Pubmed]
  10. Regional changes of ciliary neurotrophic factor and nerve growth factor levels in post mortem spinal cord and cerebral cortex from patients with motor disease. Anand, P., Parrett, A., Martin, J., Zeman, S., Foley, P., Swash, M., Leigh, P.N., Cedarbaum, J.M., Lindsay, R.M., Williams-Chestnut, R.E. Nat. Med. (1995) [Pubmed]
  11. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Stanfield, B.B., O'Leary, D.D., Fricks, C. Nature (1982) [Pubmed]
  12. Peroxisomal acyl CoA oxidase deficiency. Suzuki, Y., Iai, M., Kamei, A., Tanabe, Y., Chida, S., Yamaguchi, S., Zhang, Z., Takemoto, Y., Shimozawa, N., Kondo, N. J. Pediatr. (2002) [Pubmed]
  13. Reversible spastic and pyramidal tract signs in a patient with Parkinson's disease on L-dopa. Seyfert, S., Straschill, M. J. Neurol. (1977) [Pubmed]
  14. Alumina cream induced focal motor epilepsy in cats. II. Wakefulness--sleep modulation of pyramidal tract multiple unit activity. Velasco, M., Velasco, F., Cepeda, C., Estrada-Villanueva, F. Electroencephalography and clinical neurophysiology. (1977) [Pubmed]
  15. Ventrolateral medullary surface blood flow determined by hydrogen clearance. Feustel, P.J., Stafford, M.J., Allen, J.S., Severinghaus, J.W. Journal of applied physiology: respiratory, environmental and exercise physiology. (1984) [Pubmed]
  16. Congenital errors of folate metabolism. Zittoun, J. Baillieres Clin. Haematol. (1995) [Pubmed]
  17. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Giunti, P., Stevanin, G., Worth, P.F., David, G., Brice, A., Wood, N.W. Am. J. Hum. Genet. (1999) [Pubmed]
  18. Aberrant neuronal migration in the brainstem of fukuyama-type congenital muscular dystrophy. Saito, Y., Kobayashi, M., Itoh, M., Saito, K., Mizuguchi, M., Sasaki, H., Arima, K., Yamamoto, T., Takashima, S., Sasaki, M., Hayashi, K., Osawa, M. J. Neuropathol. Exp. Neurol. (2003) [Pubmed]
  19. Temporal and spatial expression of major myelin proteins in the human fetal spinal cord during the second trimester. Weidenheim, K.M., Bodhireddy, S.R., Rashbaum, W.K., Lyman, W.D. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  20. GABA and potassium effects on corticospinal and primary afferent tracts of neonatal rat spinal dorsal columns. Honmou, O., Sakatani, K., Young, W. Neuroscience (1993) [Pubmed]
  21. Parapyramidal rostroventromedial medulla as a respiratory rhythm modulator. Miura, M., Okada, J., Takayama, K. Neurosci. Lett. (1996) [Pubmed]
  22. Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Stone, T.W., Taylor, D.A., Bloom, F.E. Science (1975) [Pubmed]
  23. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Kullander, K., Croll, S.D., Zimmer, M., Pan, L., McClain, J., Hughes, V., Zabski, S., DeChiara, T.M., Klein, R., Yancopoulos, G.D., Gale, N.W. Genes Dev. (2001) [Pubmed]
  24. Nervous system defects of AnkyrinB (-/-) mice suggest functional overlap between the cell adhesion molecule L1 and 440-kD AnkyrinB in premyelinated axons. Scotland, P., Zhou, D., Benveniste, H., Bennett, V. J. Cell Biol. (1998) [Pubmed]
  25. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Plaitakis, A., Caroscio, J.T. Ann. Neurol. (1987) [Pubmed]
  26. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Benowitz, L.I., Goldberg, D.E., Madsen, J.R., Soni, D., Irwin, N. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  27. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Dottori, M., Hartley, L., Galea, M., Paxinos, G., Polizzotto, M., Kilpatrick, T., Bartlett, P.F., Murphy, M., Köntgen, F., Boyd, A.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  28. Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. Li, Y., Field, P.M., Raisman, G. J. Neurosci. (1998) [Pubmed]
  29. Effects on movement of surgical incisions into the human spinal cord. Nathan, P.W. Brain (1994) [Pubmed]
  30. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain. Yarnykh, V.L., Yuan, C. Neuroimage (2004) [Pubmed]
  31. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Benson, M.D., Romero, M.I., Lush, M.E., Lu, Q.R., Henkemeyer, M., Parada, L.F. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  32. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Zheng, B., Atwal, J., Ho, C., Case, L., He, X.L., Garcia, K.C., Steward, O., Tessier-Lavigne, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  33. S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. Hoyaux, D., Boom, A., Van den Bosch, L., Belot, N., Martin, J.J., Heizmann, C.W., Kiss, R., Pochet, R. J. Neuropathol. Exp. Neurol. (2002) [Pubmed]
  34. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. Zhou, L., Shine, H.D. J. Neurosci. Res. (2003) [Pubmed]
  35. Targeting neurite growth inhibitors to induce CNS regeneration. Kastin, A.J., Pan, W. Curr. Pharm. Des. (2005) [Pubmed]
  36. MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS. Schoenfeld, T.A., McKerracher, L., Obar, R., Vallee, R.B. J. Neurosci. (1989) [Pubmed]
  37. Changes in glial fibrillary acidic protein mRNA expression after corticospinal axotomy in the adult hamster. Kost-Mikucki, S.A., Oblinger, M.M. J. Neurosci. Res. (1991) [Pubmed]
  38. Direct measurement of fast axonal transport rates in corticospinal axons of the adult rat. Jacob, J.M., O'Donoghue, D.L. Neurosci. Lett. (1995) [Pubmed]
 
WikiGenes - Universities