The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Bone Diseases, Developmental

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bone Diseases, Developmental


High impact information on Bone Diseases, Developmental

  • Camurati-Engelmann disease (CED; MIM 131300), or progressive diaphyseal dysplasia, is a rare, sclerosing bone dysplasia inherited in an autosomal dominant manner [5].
  • FGFR3 mutations, which predominantly cause short-limbed bone dysplasia, occur in all three major regions (i.e., extracellular, transmembrane, and intracellular) of the protein [6].
  • Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth [7].
  • Additional LRP5 activating mutations have been identified in a variety of sclerosing bone dysplasias, improving the diagnostic classification of these disorders [8].
  • These data provide evidence that disruptions to COMP-type IX collagen interactions define a pathogenetic mechanism in a bone dysplasia family [9].

Chemical compound and disease context of Bone Diseases, Developmental


Biological context of Bone Diseases, Developmental


Anatomical context of Bone Diseases, Developmental


Gene context of Bone Diseases, Developmental

  • Loss-of-function mutations in the sclerosteosis gene (SOST) cause a rare sclerosing bone dysplasia characterized by skeletal overgrowth [16].
  • The aim of this study is to review the clinical, radiological and molecular findings of the bent bone dysplasia group including Stüve-Wiedemann syndrome due to LIFR mutations, Compomelic dysplasia due to SOX9 mutations and Kyphomelic dysplasia with no known molecular bases [17].
  • Gain of function of the gene PAX9 on chromosome 14 is a possible candidate for a t(14;18) patient affected with mesomelic bone dysplasia [18].
  • FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans [19].
  • This apparently new association of retinitis pigmentosa with a systemic bone dysplasia emphasises that this not uncommon clinical diagnosis has a variety of different possible causes [20].

Analytical, diagnostic and therapeutic context of Bone Diseases, Developmental


  1. Increased interleukin-6 production in mouse osteoblastic MC3T3-E1 cells expressing activating mutant of the stimulatory G protein. Motomura, T., Kasayama, S., Takagi, M., Kurebayashi, S., Matsui, H., Hirose, T., Miyashita, Y., Yamauchi-Takihara, K., Yamamoto, T., Okada, S., Kishimoto, T. J. Bone Miner. Res. (1998) [Pubmed]
  2. The effects of acid glycosaminoglycans on neonatal calvarian cultures--a role of keratan sulfate in Morquio syndrome? Fang-Kircher, S.G., Herkner, K., Windhager, R., Lubec, G. Life Sci. (1997) [Pubmed]
  3. Deferoxamine-induced bone dysplasia in the distal femur and patella of pediatric patients and young adults: MR imaging appearance. Chan, Y., Li, C., Chu, W.C., Pang, L., Cheng, J.C., Chik, K.W. AJR. American journal of roentgenology. (2000) [Pubmed]
  4. Patterns of bone diseases in transfusion-dependent homozygous thalassaemia major: predominance of osteoporosis and desferrioxamine-induced bone dysplasia. Chan, Y.L., Pang, L.M., Chik, K.W., Cheng, J.C., Li, C.K. Pediatric radiology. (2002) [Pubmed]
  5. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Janssens, K., Gershoni-Baruch, R., Guañabens, N., Migone, N., Ralston, S., Bonduelle, M., Lissens, W., Van Maldergem, L., Vanhoenacker, F., Verbruggen, L., Van Hul, W. Nat. Genet. (2000) [Pubmed]
  6. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Kan, S.H., Elanko, N., Johnson, D., Cornejo-Roldan, L., Cook, J., Reich, E.W., Tomkins, S., Verloes, A., Twigg, S.R., Rannan-Eliya, S., McDonald-McGinn, D.M., Zackai, E.H., Wall, S.A., Muenke, M., Wilkie, A.O. Am. J. Hum. Genet. (2002) [Pubmed]
  7. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Brunkow, M.E., Gardner, J.C., Van Ness, J., Paeper, B.W., Kovacevich, B.R., Proll, S., Skonier, J.E., Zhao, L., Sabo, P.J., Fu, Y., Alisch, R.S., Gillett, L., Colbert, T., Tacconi, P., Galas, D., Hamersma, H., Beighton, P., Mulligan, J. Am. J. Hum. Genet. (2001) [Pubmed]
  8. Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Ferrari, S.L., Deutsch, S., Antonarakis, S.E. Curr. Opin. Lipidol. (2005) [Pubmed]
  9. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. Holden, P., Meadows, R.S., Chapman, K.L., Grant, M.E., Kadler, K.E., Briggs, M.D. J. Biol. Chem. (2001) [Pubmed]
  10. Desferrioxamine-induced long bone changes in thalassaemic patients - radiographic features, prevalence and relations with growth. Chan, Y.L., Li, C.K., Pang, L.M., Chik, K.W. Clinical radiology. (2000) [Pubmed]
  11. McCune-Albright syndrome--the German experience. Albers, N., Jörgens, S., Deiss, D., Hauffa, B.P. Journal of pediatric endocrinology & metabolism : JPEM. (2002) [Pubmed]
  12. Diagnostic imaging update in skeletal dysplasias. Dominguez, R., Talmachoff, P. Clinical imaging. (1993) [Pubmed]
  13. Unusual bone dysplasia featuring severe platyspondyly and vertebral "coronal cleft" in infancy, and changes of metaphyseal chondrodysplasia in childhood. Currarino, G. Pediatric radiology. (1986) [Pubmed]
  14. Phenotypic variability at the TGF-beta1 locus in Camurati-Engelmann disease. Campos-Xavier, B., Saraiva, J.M., Savarirayan, R., Verloes, A., Feingold, J., Faivre, L., Munnich, A., Le Merrer, M., Cormier-Daire, V. Hum. Genet. (2001) [Pubmed]
  15. Lack of association between the SOST gene and bone mineral density in perimenopausal women: analysis of five polymorphisms. Balemans, W., Foernzler, D., Parsons, C., Ebeling, M., Thompson, A., Reid, D.M., Lindpaintner, K., Ralston, S.H., Van Hul, W. Bone (2002) [Pubmed]
  16. Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST). Sevetson, B., Taylor, S., Pan, Y. J. Biol. Chem. (2004) [Pubmed]
  17. New insights in congenital bowing of the femora. Cormier-Daire, V., Geneviève, D., Munnich, A., Le Merrer, M. Clin. Genet. (2004) [Pubmed]
  18. Defining the breakpoints of proximal chromosome 14q rearrangements in nine patients using flow-sorted chromosomes. Kamnasaran, D., O'Brien, P.C., Schuffenhauer, S., Quarrell, O., Lupski, J.R., Grammatico, P., Ferguson-Smith, M.A., Cox, D.W. Am. J. Med. Genet. (2001) [Pubmed]
  19. Involvement of fibroblast growth factor (FGF)18-FGF8 signaling in specification of left-right asymmetry and brain and limb development of the chick embryo. Ohuchi, H., Kimura, S., Watamoto, M., Itoh, N. Mech. Dev. (2000) [Pubmed]
  20. Retinitis pigmentosa, metaphyseal chondrodysplasia, and brachydactyly: an affected brother and sister. Phillips, C.I., Wynne-Davies, R., Stokoe, N.L., Newton, M. J. Med. Genet. (1981) [Pubmed]
WikiGenes - Universities