The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation.

Aquaporins (AQPs) are a family of water-selective transporting proteins with homology to the major intrinsic protein (MIP) of lens [Cell 39 (1984) 49], that increase plasma membrane water permeability in secretory and absorptive cells. In the central nervous system (CNS), we detected the transcripts of AQP3, 5 and 8 in addition to the previously reported transcripts of AQP4 and 9 in astrocytes, of AQP3, 5 and 8 in neurons, of AQP8 in oligodendrocytes, and none of them in microglia using RNase protection assay and the reverse transcription-polymerase chain reaction (RT-PCR). Hypoxia evoked a marked decrease in the expression levels of AQP4, 5 and 9, but not of AQP3 and 8 mRNAs, and in astrocytes in vitro subsequent reoxygenation elicited the restoration of the expression of AQP4 and 9 to their basal levels. Interestingly, AQP5 showed a transient up-regulation (about 3-fold) and subsequent down-regulation of its expression within 20 h of reoxygenation after hypoxia. The changes in the profiles of AQP expression during hypoxia and reoxygenation were also observed by Western blot analysis. These results suggest that AQP5 may be one of the candidates for inducing the intracranial edema in the CNS after ischemia injury.[1]

References

  1. Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation. Yamamoto, N., Yoneda, K., Asai, K., Sobue, K., Tada, T., Fujita, Y., Katsuya, H., Fujita, M., Aihara, N., Mase, M., Yamada, K., Miura, Y., Kato, T. Brain Res. Mol. Brain Res. (2001) [Pubmed]
 
WikiGenes - Universities