The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The flavonol quercetin activates basolateral K(+) channels in rat distal colon epithelium.

1. The flavonol quercetin has been shown to activate a Cl(-) secretion in rat colon. Unlike the secretory activity of the related isoflavone genistein, quercetin's secretory activity does not depend on cyclic AMP; instead, it depends on Ca(2+). We investigated the possible involvement of Ca(2+) dependent basolateral K(+) channels using apically permeabilized rat distal colon epithelium mounted in Ussing chambers. 2. In intact epithelium, quercetin induced an increase in short-circuit current (I(sc)), which was diminished by the Cl(-) channel blockers NPPB and DPC, but not by glibenclamide, DIDS or anthracene-9-carboxylic acid. The effect of the flavonol was also inhibited by several serosally applied K(+) channel blockers (Ba(2+), quinine, clotrimazole, tetrapentylammonium, 293B), whereas other K(+) channel blockers failed to influence the quercetin-induced increase in I(sc) (tetraethylammonium, charybdotoxin). 3. The apical membrane was permeabilized by mucosal addition of nystatin and a serosally directed K(+) gradient was applied. The successful permeabilization was confirmed by experiments demonstrating the failure of bumetanide to inhibit the carbachol-induced current. 4. In apically permeabilized epithelium, quercetin induced a K(+) current (I(K)), which was neither influenced by ouabain nor by bumetanide. Whereas DPC, NPPB, charybdotoxin and 293B failed to inhibit this I(K), quinine, Ba(2+), clotrimazole and tetrapentylammonium were effective blockers of this current. 5. We conclude from these results that at least part of the quercetin-induced Cl(-) secretion can be explained by an activation of basolateral K(+) channels.[1]

References

  1. The flavonol quercetin activates basolateral K(+) channels in rat distal colon epithelium. Cermak, R., Kuhn, G., Wolffram, S. Br. J. Pharmacol. (2002) [Pubmed]
 
WikiGenes - Universities