The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Flavonol     3-hydroxy-2-phenyl-chromen-4- one

Synonyms: Flavon-3-ol, SureCN20246, H4280_ALDRICH, CHEMBL294009, CHEBI:5078, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Flavonol

  • Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells [1].
  • To determine the domain responsible for the properties of the flavonol STs, several chimeric flavonol STs were constructed by the reciprocal exchange of DNA fragments derived from the plasmids pFST3 and pFST4' and by the expression of the corresponding chimeric proteins in Escherichia coli [2].
  • After adjustment for tea consumption and flavonol intake, a 7.5-mg increase in catechin intake from sources other than tea was associated with a tendency for a 20% reduction in ischemic heart disease mortality risk (P = 0.114) [3].
  • In a large US cohort, a protective effect was only found in a subgroup with previous history of coronary heart disease, whereas in Welsh men, flavonol intake, mainly from tea, was associated with an increased risk of coronary heart disease [4].
  • In the multivariate model, the relative risk of nonfatal myocardial infarction was 0.77 (95% confidence interval = 0.64-0.93) among men in the highest (median 18 mg per day) compared with the lowest (median 4 mg per day) quintile of flavonol and flavone intake [5].
 

High impact information on Flavonol

 

Chemical compound and disease context of Flavonol

 

Biological context of Flavonol

 

Anatomical context of Flavonol

  • Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils [20].
  • In summary, quercetin, a natural flavonol widely distributed in the human diet, inhibits NO production in IL-1beta-stimulated hepatocytes through the inhibition of iNOS expression [21].
  • Flavonol concentrations were determined in plasma, ileal and cecal contents, and feces [22].
  • Flavone and flavonol glucosides and their corresponding aglycones are glucuronidated during transfer across the rat jejunum and ileum and this glucuronidation occurs without the need for gut microflora [23].
  • We evaluated the ability of a synthetic flavonol, 3',4'-dihydroxyflavonol (DiOHF) to scavenge superoxide in post-I/R myocardium and to prevent myocardial I/R injury [24].
 

Associations of Flavonol with other chemical compounds

 

Gene context of Flavonol

 

Analytical, diagnostic and therapeutic context of Flavonol

References

  1. Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells. Phang, J.M., Poore, C.M., Lopaczynska, J., Yeh, G.C. Cancer Res. (1993) [Pubmed]
  2. Chimeric flavonol sulfotransferases define a domain responsible for substrate and position specificities. Varin, L., Marsolais, F., Brisson, N. J. Biol. Chem. (1995) [Pubmed]
  3. Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Arts, I.C., Hollman, P.C., Feskens, E.J., Bueno de Mesquita, H.B., Kromhout, D. Am. J. Clin. Nutr. (2001) [Pubmed]
  4. Tea flavonols in cardiovascular disease and cancer epidemiology. Hollman, P.C., Feskens, E.J., Katan, M.B. Proc. Soc. Exp. Biol. Med. (1999) [Pubmed]
  5. Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Hirvonen, T., Pietinen, P., Virtanen, M., Ovaskainen, M.L., Häkkinen, S., Albanes, D., Virtamo, J. Epidemiology (Cambridge, Mass.) (2001) [Pubmed]
  6. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Liu, C.J., Blount, J.W., Steele, C.L., Dixon, R.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Anaerobic enzyme.substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase. Steiner, R.A., Kalk, K.H., Dijkstra, B.W. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Burbulis, I.E., Winkel-Shirley, B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin. Sytnik, A., Litvinyuk, I. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  10. Molecular characterization of two plant flavonol sulfotransferases. Varin, L., DeLuca, V., Ibrahim, R.K., Brisson, N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  11. Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonella typhimurium. MacGregor, J.T., Jurd, L. Mutat. Res. (1978) [Pubmed]
  12. Fisetin induces transcription of NADPH:quinone oxidoreductase gene through an antioxidant responsive element-involved activation. Hou, D.X., Fukuda, M., Johnson, J.A., Miyamori, K., Ushikai, M., Fujii, M. Int. J. Oncol. (2001) [Pubmed]
  13. The skin-lightening effects of artocarpin on UVB-induced pigmentation. Shimizu, K., Kondo, R., Sakai, K., Takeda, N., Nagahata, T. Planta Med. (2002) [Pubmed]
  14. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Miyahisa, I., Funa, N., Ohnishi, Y., Martens, S., Moriguchi, T., Horinouchi, S. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  15. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. Kim, H.J., Woo, E.R., Shin, C.G., Park, H. J. Nat. Prod. (1998) [Pubmed]
  16. Sulfation and sulfotransferases 6: Biochemistry and molecular biology of plant sulfotransferases. Varin, L., Marsolais, F., Richard, M., Rouleau, M. FASEB J. (1997) [Pubmed]
  17. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. Jones, P., Messner, B., Nakajima, J., Schäffner, A.R., Saito, K. J. Biol. Chem. (2003) [Pubmed]
  18. Flavonoids as enhancers of x-ray-induced cell damage in hepatoma cells. van Rijn, J., van den Berg, J. Clin. Cancer Res. (1997) [Pubmed]
  19. Regulation of flavonol biosynthesis during anther and pistil development, and during pollen tube growth in Solanum tuberosum. van Eldik, G.J., Reijnen, W.H., Ruiter, R.K., van Herpen, M.M., Schrauwen, J.A., Wullems, G.J. Plant J. (1997) [Pubmed]
  20. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. Higa, S., Hirano, T., Kotani, M., Matsumoto, M., Fujita, A., Suemura, M., Kawase, I., Tanaka, T. J. Allergy Clin. Immunol. (2003) [Pubmed]
  21. Quercetin attenuates nuclear factor-kappaB activation and nitric oxide production in interleukin-1beta-activated rat hepatocytes. Martínez-Flórez, S., Gutiérrez-Fernández, B., Sánchez-Campos, S., González-Gallego, J., Tuñón, M.J. J. Nutr. (2005) [Pubmed]
  22. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. Manach, C., Morand, C., Texier, O., Favier, M.L., Agullo, G., Demigné, C., Régérat, F., Rémésy, C. J. Nutr. (1995) [Pubmed]
  23. The small intestine can both absorb and glucuronidate luminal flavonoids. Spencer, J.P., Chowrimootoo, G., Choudhury, R., Debnam, E.S., Srai, S.K., Rice-Evans, C. FEBS Lett. (1999) [Pubmed]
  24. 3',4'-Dihydroxyflavonol reduces infarct size and injury associated with myocardial ischaemia and reperfusion in sheep. Wang, S., Dusting, G.J., May, C.N., Woodman, O.L. Br. J. Pharmacol. (2004) [Pubmed]
  25. Novel flavonol 3-sulfotransferase. Purification, kinetic properties, and partial amino acid sequence. Varin, L., Ibrahim, R.K. J. Biol. Chem. (1992) [Pubmed]
  26. Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Cornish, K.M., Williamson, G., Sanderson, J. Free Radic. Biol. Med. (2002) [Pubmed]
  27. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Mehrtens, F., Kranz, H., Bednarek, P., Weisshaar, B. Plant Physiol. (2005) [Pubmed]
  28. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Jaakola, L., Määttä, K., Pirttilä, A.M., Törrönen, R., Kärenlampi, S., Hohtola, A. Plant Physiol. (2002) [Pubmed]
  29. Mucosal mast cells. III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. Pearce, F.L., Befus, A.D., Bienenstock, J. J. Allergy Clin. Immunol. (1984) [Pubmed]
  30. Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. Yonekura-Sakakibara, K., Tohge, T., Niida, R., Saito, K. J. Biol. Chem. (2007) [Pubmed]
  31. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. Lu, H., Chang, D.J., Baratte, B., Meijer, L., Schulze-Gahmen, U. J. Med. Chem. (2005) [Pubmed]
  32. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1. Chang, T.K., Chen, J., Yeung, E.Y. Toxicol. Appl. Pharmacol. (2006) [Pubmed]
  33. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. Kim, M.H. J. Cell. Biochem. (2003) [Pubmed]
  34. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., Weisshaar, B. Plant J. (2007) [Pubmed]
  35. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., Niida, R., Watanabe-Takahashi, A., Inoue, E., Saito, K. Plant. Cell (2008) [Pubmed]
  36. Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Lean, M.E., Noroozi, M., Kelly, I., Burns, J., Talwar, D., Sattar, N., Crozier, A. Diabetes (1999) [Pubmed]
  37. Identification of amino acid residues critical for catalysis and cosubstrate binding in the flavonol 3-sulfotransferase. Marsolais, F., Varin, L. J. Biol. Chem. (1995) [Pubmed]
  38. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. de Vries, J.H., Hollman, P.C., Meyboom, S., Buysman, M.N., Zock, P.L., van Staveren, W.A., Katan, M.B. Am. J. Clin. Nutr. (1998) [Pubmed]
  39. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W., Dixon, R.A. Plant J. (2005) [Pubmed]
  40. 3'-Phosphoadenosine 5'-phosphosulfate binding site of flavonol 3-sulfotransferase studied by affinity chromatography and 31P NMR. Marsolais, F., Laviolette, M., Kakuta, Y., Negishi, M., Pedersen, L.C., Auger, M., Varin, L. Biochemistry (1999) [Pubmed]
 
WikiGenes - Universities