The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular mechanisms of cardiac hypertrophy induced by toxicants.

Cardiac hypertrophy is an end point of chronic cardiac toxicity from a number of toxicants. Doxorubicin, cocaine, acetaldehyde, monocrotaline, and azide are examples of these toxicants, which may induce hypertrophy by increasing oxidants, circulating levels of catecholamines, and hemodynamic load or by inducing hypoxia. We summarize here the major signal transduction pathways and common changes in gene expression found with the classical hypertrophy inducers angiotensin II, endothelin 1, and catecholamines. Activation of G-proteins, calcium signaling, phosphoinositide 3-kinase (PI3K), certain family members of protein kinase Cs (PKCs), and three branches of mitogenactivated protein kinases (MAPKs), i.e. extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases (JNKs), are important for developing a hypertrophic phenotype in cardiomyocytes. Characteristic changes of gene expression in hypertrophy include the elevated transcription of atrial natriuretic factor (ANF), beta-myosin heavy chain (beta MHC), skeletal alpha-actin (SkA), certain variants of integrins and perhaps tubulin genes, and reduced expression of the sarcoplasmic reticulum proteins phospholamban and sarco(endo)plasmic reticulum Ca2+-ATPase 2 alpha (SERCA2 alpha), and of the ryanodine receptors. Although which toxicants induce these molecular changes remains to be tested, increasing lines of evidence support that oxidants play a central role in cardiac hypertrophy. Oxidants activate small G-proteins, calcium signaling, PI3K, PKCs, and MAPKs. Oxidants cause cardiomyocytes to enlarge in vitro. Recent developments in transgenic, genomic, and proteomic technologies will provide needed tools to reveal the mechanism of chronic cardiac toxicity at the cellular and molecular levels.[1]

References

  1. Molecular mechanisms of cardiac hypertrophy induced by toxicants. Chen, Q.M., Tu, V.C., Purdon, S., Wood, J., Dilley, T. Cardiovasc. Toxicol. (2001) [Pubmed]
 
WikiGenes - Universities