The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1.

Aux/IAA proteins are short-lived transcriptional regulators involved in auxin signaling. Using Aux/IAA luciferase (LUC) fusion proteins expressed in Arabidopsis thaliana, we previously showed that rapid degradation of these proteins requires conserved Aux/IAA domain II and that exogenous auxin accelerates their degradation. To further examine auxin-mediated increases in proteolysis, the degradation of two other LUC fusion proteins, a non-cleavable ubiquitin LUC fusion (UB1-72::LUC) and SAUR15::LUC was determined in vivo in seedlings. Their half-lives were 20 +/- 4 and 104 +/- 10 min, respectively. SAUR15::LUC half-life was not affected by pre-incubation with 2,4-D. Auxin did not have an equivalent effect on UB(1-72)::LUC steady-state levels as compared to PsIAA6:LUC. LUC fused to an Aux/IAA domain II degraded more rapidly following auxin application, demonstrating that this region is sufficient for auxin-mediated acceleration of proteolysis. Hormonal cross-talk at the level of Aux/IAA proteolysis was examined. 1-aminocyclopropane-1-carboxylic acid (ACC), benzyladenine (BA), abscisic acid (ABA), and brassinolide (BL) did not affect the degradation rate of IAA1::LUC, and gibberellic acid (GA3) and salicylic acid (SA) did not specifically affect the steady-state levels of Aux/IAA::LUC proteins. An Aux/IAA::LUC transgene was crossed into the auxin resistant-1 (axr1-12) background. In axr1-12, the half-life of PsIAA6(1-73)::LUC increased 4.5-fold, but proteolysis still accelerated in response to exogenous auxin. These data suggest that auxin is the only phytohormone that accelerates Aux/IAA proteolysis, and that this acceleration is specific for Aux/IAA proteins. In addition, AXR1 plays an important role in rapid basal proteolysis of Aux/IAA proteins, but is not required for auxin-mediated acceleration of their degradation.[1]

References

  1. Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1. Zenser, N., Dreher, K.A., Edwards, S.R., Callis, J. Plant J. (2003) [Pubmed]
 
WikiGenes - Universities