The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development.

Mitochondrial NADP+-isocitrate dehydrogenase activity is crucial for cardiomyocyte energy and redox status, but much remains to be learned about its role and regulation. We obtained data in spontaneously hypertensive rat hearts that indicated a partial inactivation of this enzyme before hypertrophy development. We tested the hypothesis that cardiac mitochondrial NADP+-isocitrate dehydrogenase is a target for modification by the lipid peroxidation product 4-hydroxynonenal, an aldehyde that reacts readily with protein sulfhydryl and amino groups. This hypothesis is supported by the following in vitro and in vivo evidence. In isolated rat heart mitochondria, enzyme inactivation occurred within a few minutes upon incubation with 4-hydroxynonenal and was paralleled by 4-hydroxynonenal/NADP+-isocitrate dehydrogenase adduct formation. Enzyme inactivation was prevented by the addition of its substrate isocitrate or a thiol, cysteine or glutathione, suggesting that 4-hydroxynonenal binds to a cysteine residue near the substrate's binding site. Using an immunoprecipitation approach, we demonstrated the formation of 4-hydroxynonenal/NADP+-isocitrate dehydrogenase adducts in the heart and their increased level (210%) in 7-week-old spontaneously hypertensive rats compared with control Wistar Kyoto rats. To the best of our knowledge, this is the first study to demonstrate that mitochondrial NADP+-isocitrate dehydrogenase is a target for inactivation by 4-hydroxynonenal binding. Furthermore, the pathophysiological significance of our finding is supported by in vivo evidence. Taken altogether, our results have implications that extend beyond mitochondrial NADP+-isocitrate dehydrogenase. Indeed, they emphasize the implication of post-translational modifications of mitochondrial metabolic enzymes by 4-hydroxynonenal in the early oxidative stress-related pathophysiological events linked to cardiac hypertrophy development.[1]


WikiGenes - Universities