The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Oxygen radical scavengers selectively inhibit interleukin 8 production in human whole blood.

The hydroxyl radical (OH.) scavenger dimethyl sulfoxide (DMSO) was found to dose-dependently inhibit interleukin 8 (IL-8) production in LPS-stimulated human whole blood. At a concentration of 1% (vol/vol), DMSO blocked IL-8 release by approximately 90% in the presence of 1 microgram/ml LPS at a 24-h time point, but did not affect cell viability or reduce the production of tumor necrosis factor (TNF), interleukin 6, or interleukin-1 beta (IL-1 beta). DMSO was found to directly inhibit IL-8 expression at the level of transcription. Furthermore, this effect was not LPS-specific, in that IL-8 production was reduced by DMSO to a similar extent upon stimulation of blood with phytohemagglutinin, aggregated immune complexes, TNF, or IL-1 beta. Other oxygen radical scavengers that have been shown to inhibit OH.-dependent reactions (dimethyl thiourea, thiourea, mannitol, and ethanol) also inhibited IL-8 production. Conversely, addition of H2O2 caused a dose-dependent stimulation of IL-8 release. These results provide evidence that reactive oxygen metabolites play an important role in the regulation of IL-8 production and suggest that reduction of IL-8 release may contribute to the beneficial effects of antioxidants in experimental models of inflammation and ischemia/reperfusion injury.[1]


  1. Oxygen radical scavengers selectively inhibit interleukin 8 production in human whole blood. DeForge, L.E., Fantone, J.C., Kenney, J.S., Remick, D.G. J. Clin. Invest. (1992) [Pubmed]
WikiGenes - Universities