The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

cAMP signaling in neurons: patterns of neuronal expression and intracellular localization for a novel protein, AKAP 150, that anchors the regulatory subunit of cAMP-dependent protein kinase II beta.

In mammalian brain, physiological signals carried by cyclic AMP (cAMP) seem to be targeted to effector sites via the tethering of cAMP-dependent protein kinase II beta (PKAII beta) to intracellular structures. Recently characterized A kinase anchor proteins (AKAPs) are probable mediators of the sequestration of PKAII beta because they contain a high-affinity binding site for the regulatory subunit (RII beta) of the kinase and a distinct intracellular targeting domain. To establish a cellular basis for this targeting mechanism, we have employed immunocytochemistry to 1) identify the types of neurons that are enriched in AKAPs, 2) determine the primary intracellular location of the anchor protein, and 3) demonstrate that an AKAP and RII beta are coenriched and colocalized in neurons that utilize the adenylate cyclase-cyclic AMP-dependent protein kinase (PKA) signaling pathway. Antibodies directed against rat brain AKAP 150 were used to elucidate the regional, cellular and intracellular distribution of a prototypic anchor protein in the CNS. AKAP 150 is abundant in Purkinje cells and in neurons of the olfactory bulb, basal ganglia, cerebral cortex, and other forebrain regions. In contrast, little AKAP 150 is detected in neurons of the thalamus, hypothalamus, midbrain, and hindbrain. A high proportion of total AKAP 150 is concentrated in primary branches of dendrites, where it is associated with microtubules. We also discovered that the patterns of accumulation and localization of RII beta (and PKAII beta) in brain are similar to those of AKAP 150. The results suggest that bifunctional AKAP 150 tethers PKAII beta to the dendritic cytoskeleton, thereby creating a discrete target site for the reception and propagation of signals carried by cAMP.[1]

References

 
WikiGenes - Universities