The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Modification of Kv2.1 K+ currents by the silent Kv10 subunits.

Human and rat Kv10.1a and b cDNAs encode silent K+ channel pore-forming subunits that modify the electrophysiological properties of Kv2. 1. These alternatively spliced variants arise by the usage of an alternative site of splicing in exon 1 producing an 11-amino acid insertion in the linker between the first and second transmembrane domains in Kv10.1b. In human, the Kv10s mRNA were detected by Northern blot in brain kidney lung and pancreas. In brain, they were expressed in cortex, hippocampus, caudate, putamen, amygdala and weakly in substantia nigra. In rat, Kv10.1 products were detected in brain and weakly in testes. In situ hybridization in rat brain shows that Kv10.1 mRNAs are expressed in cortex, olfactory cortical structures, basal ganglia/striatal structures, hippocampus and in many nuclei of the amygdala complex. The CA3 and dentate gyrus of the hippocampus present a gradient that show a progression from high level of expression in the caudo-ventro-medial area to a weak level in the dorso-rostral area. The CA1 and CA2 areas had low levels throughout the hippocampus. Several small nuclei were also labeled in the thalamus, hypothalamus, pons, midbrain, and medulla oblongata. Co-injection of Kv2.1 and Kv10.1a or b mRNAs in Xenopus oocytes produced smaller currents that in the Kv2.1 injected oocytes and a moderate reduction of the inactivation rate without any appreciable change in recovery from inactivation or voltage dependence of activation or inactivation. At higher concentration, Kv10.1a also reduces the activation rate and a more important reduction in the inactivation rate. The gene that encodes for Kv10.1 mRNAs maps to chromosome 2p22.1 in human, 6q12 in rat and 17E4 in mouse, locations consistent with the known systeny for human, rat and mouse chromosomes.[1]


  1. Modification of Kv2.1 K+ currents by the silent Kv10 subunits. Vega-Saenz de Miera, E.C. Brain Res. Mol. Brain Res. (2004) [Pubmed]
WikiGenes - Universities