Msx1 expression in the adult mouse brain: characterization of populations of beta-galactosidase-positive cells in the hippocampus and fimbria.
We have analyzed Msx1 expression in the mature mouse brain using in situ hybridization and beta-galactosidase activity in Msx1(nLacZ) mice. The study revealed that Msx1 is strongly expressed in the circumventricular organs, such as the subcommissural organ and choroid plexus, and in some epithelia, such as that of the dorsal, but not the ventral part of the third ventricle. Immunohistochemical analysis revealed that the Msx1-expressing cells of the hippocampus and fimbria are astrocytes, oligodendrocytes or immature oligodendrocytes. In contrast, no co-expression was detected in these structures using several neuronal markers. These results were confirmed, using transmission electron microscopy, by the presence of 5-bromo-3-indolyl-beta-D-galactopyranosideprecipitates in astrocytes and oligodendrocytes in both sites. Moreover, using an anti-glial fibrillary acidic protein antibody (GFAP), our study reveals two populations of astrocytes in the adult hippocampus and other areas, such as the fimbria, namely Msx1+/GFAP+ and Msx1-/GFAP+. Beta-galactosidase activity was also observed in endothelial cells of hippocampal fissure blood vessels. We also observed co-localization of polysialic acid neural cell adhesion molecule, a marker of the polysialylated form of the neural cell adhesion molecule, in Msx1-expressing cells in the fimbria. These cells may be precursors of glial cells and originate from the epithelium of the fimbria. The present study indicates, in the mature mouse brain, that Msx1 may be linked to secretory activity in circumventricular organs, and to glial proliferation and differentiation in the hippocampus and fimbria, and presumably also in other cerebral areas. We suggest that Msx1 could be associated with brain homeostasis and blood-brain barrier function.[1]References
- Msx1 expression in the adult mouse brain: characterization of populations of beta-galactosidase-positive cells in the hippocampus and fimbria. Ramos, C., Martinez, A., Robert, B., Soriano, E. Neuroscience (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg