Exposure of mice to the nitroso metabolite of sulfamethoxazole stimulates interleukin 5 production by CD4+ T-cells.
Sulfamethoxazole hypersensitivity may be caused by production of the protein-reactive metabolite nitroso sulfamethoxazole (SMX-NO) and interaction of SMX-NO with T-cells. We have characterised the nature of the immune response induced by administration of sulfamethoxazole, sulfamethoxazole metabolites and nitrosobenzene to BALB/c mice. Drugs were administered over a 13-day period to induce polarised cytokine secretion profiles. Proliferation was measured by [(3)H] thymidine incorporation. Cytokine secretion was monitored by ELISA. Results were compared with those provoked by exposure to type 1 and type 2 chemical allergens, 2,4-dinitrochlorobenzene (DNCB) and trimellitic anhydride (TMA). CD4(+) or CD8(+) T-cells were depleted ex vivo to identify the primary source of cytokines. Lymph node activation was observed following treatment with DNCB, TMA, nitrosobenzene and SMX-NO, but not with sulfamethoxazole or sulfamethoxazole hydroxylamine (SMX-NHOH). DNCB and TMA induced type 1 and type 2 cytokine profiles, respectively. SMX-NO treatment stimulated the production of high levels of IL-5, variable amounts of IFN-gamma, and relatively low levels of IL-10 and IL-4. Nitrosobenzene-activated lymph node cells secreted only low levels of IFN-gamma and IL-5. Depletion of CD4(+) or CD8(+) T-cells from SMX-NO stimulated lymph node cells revealed that CD4(+) T-cells were the major source of IL-5. In conclusion, the data presented indicates that subcutaneous administration to mice of SMX-NO, but not the parent drug, stimulated the secretion of high levels of IL-5 from activated CD4(+) T-cells, which is consistent with the clinical profile of the drug.[1]References
- Exposure of mice to the nitroso metabolite of sulfamethoxazole stimulates interleukin 5 production by CD4+ T-cells. Hopkins, J.E., Naisbitt, D.J., Humphreys, N., Dearman, R.J., Kimber, I., Park, B.K. Toxicology (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg