The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The ADAM-integrin-tetraspanin complex in fetal and postnatal testicular cords.

New insights have emerged about the expression, during testicular cord formation, of the ADAM (a disintegrin and metalloprotease) domain family of proteins that combines both cell surface adhesion and proteolytic activity; this family includes integrins alpha3beta1 and alpha6beta1 and tetraspanins, a distinct family of proteins containing four transmembrane domains, a small and a large extracellular loop, and short cytoplasmic tails. ADAM3 (cyritestin), ADAM5, ADAM6, and ADAM15 are expressed in fetal rat testes. In contrast, the expression of the ADAM1/ADAM2 pair (fertilin alpha/fertilin beta, respectively) is not detected in fetal testis. Yet the expression of ADAM1 starts immediately after birth, and is followed within 24 hr by the expression of ADAM2. Therefore, the ADAM1/ADAM2 heterodimer is visualized far in advance of the meiotic and spermiogenic phase of spermatogenesis. A similar expression pattern was observed for integrin subunits alpha3, alpha6, and beta1, as well as for tetraspanins CD9, CD81, and CD98; the latter is a single-pass integrin subunit beta1-binding protein. ADAM2, integrin subunits alpha3, alpha6, and beta1, and tetraspanin CD9 and CD81 immunoreactive sites are observed in prespermatogonia (also known as primordial germ cells or gonocytes). A model is proposed in which the ADAM-integrin-tetraspanin complex, known to constitute a network of membrane microdomains called the tetraspanin web, may be involved in the migration of prespermatogonia from the center to the periphery of the testicular cords and in the reinitiation of mitotic activity during the initial wave of spermatogenesis. A complementary model consists in the rearrangement of the tetraspanin web in prespermatogonia/spermatogonia undergoing spontaneous or Fas-induced apoptosis upon coculturing with Sertoli cells. In this model, the cellular site involved in the formation of preapoptotic bodies is devoid of tetraspanin-integrin clusters, in contrast with nonapoptotic cells, which display a diffuse circumferential distribution. In apoptotic prespermatogonia, immunoreactive clusters are restricted to sites where the attachment of prespermatogonia/spermatogonia to Sertoli cell surfaces is still preserved.[1]

References

  1. The ADAM-integrin-tetraspanin complex in fetal and postnatal testicular cords. Tres, L.L., Kierszenbaum, A.L. Birth Defects Res. C Embryo Today (2005) [Pubmed]
 
WikiGenes - Universities