The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene.

Since the 1980s, the incidence of late-onset breast cancer has been increasing in the United States. Known risk factors, such as genetic modifications, have been estimated to account for approximately 5 to 10% of breast cancer cases, and these tend to be early onset. Thus, exposure to and bioaccumulation of ubiquitous environmental chemicals, such as polycyclic aromatic hydrocarbons (PAHs), have been proposed to play a role in this increased incidence. Treatment of female Sprague-Dawley rats with a single dose of the PAH 7,12-dimethylbenz[a]anthracene (DMBA) induces mammary tumors in approximately 90 to 95% of test animals. We showed previously that female rats treated with DMBA and given green tea as drinking fluid displayed significantly decreased mammary tumor burden and invasiveness and a significantly increased latency to first tumor. Here we used cDNA microarray analysis to elucidate the effects of the green tea polyphenol epigallocatechin-3 gallate (EGCG) on the gene expression profile in a DMBA-transformed breast cancer cell line. RNA was isolated, in quadruplicate, from D3-1 cells treated with 60 mug/mL EGCG for 2, 7, or 24 h and subjected to analysis. Semiquantitative RT-PCR and Northern blot analyses confirmed the changes in the expression of 12 representative genes seen in the microarray experiments. Overall, our results documented EGCG-altered expression of genes involved in nuclear and cytoplasmic transport, transformation, redox signaling, response to hypoxia, and PAHs.[1]

References

 
WikiGenes - Universities