The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enantiomeric resolution of chiral pesticides by high-performance liquid chromatography.

Successful enantiomeric separation of 10 chiral pesticides by high-performance liquid chromatography (HPLC) using cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was performed. The mobile phase was n-hexane modified by ethanol, propanol, 2-propanol ( IPA), butanol, or isobutanol. The effects of mobile phase composition and column temperature on the separation were investigated. Baseline separation was obtained with ethofumesate, fluroxypyr-meptyl, malathion, benalaxyl, diclofop-methyl, methamidophos, vinclozolin, and lactofen, whereas near baseline separation was obtained with profenofos and acetochlor. Butanol was the best modifier for benalaxyl; isobutanol was the best modifier for lactofen, malathion, diclofop-methyl, and ethofumesate; and IPA was the best modifier for the other five. Better separations were not always at low temperature. The elution orders of the eluting enantiomers were determined by a circular dichroism (CD) detector. The quantitative analysis methods for the enantiomers of ethofumesate, benalaxyl, and diclofop-methyl were established. Validation parameters include linearity, precision, and limit of detection (LOD). The enantiomeric residual analysis procedures in soil and water samples were also developed using acetone extraction and C(18) solid phase extraction. The methods were reliable for residual analysis of the enantiomers.[1]

References

  1. Enantiomeric resolution of chiral pesticides by high-performance liquid chromatography. Wang, P., Jiang, S., Liu, D., Zhang, H., Zhou, Z. J. Agric. Food Chem. (2006) [Pubmed]
 
WikiGenes - Universities