The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA.

A crude extract from Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin was previously shown to incorporate methylmalonyl-CoA into mycocerosic acids, exemplified by 2,4,6,8-tetramethyloctacosanoic acid, and malonyl-CoA into n-fatty acids (Rainwater D. L., and Kolattukudy, P. E. (1983) J. Biol. Chem. 258, 2979-2985). The presence of several fatty acid synthases with differences in substrate preference and product chain length was detected in the crude extract of M. tuberculosis var. bovis. Among them was a mycocerosic acid synthase which was purified to homogeneity using anion-exchange chromatography, gel filtration, affinity chromatography, and hydroxylapatite chromatography. This fatty acid synthase elongated long-chain fatty acyl-CoA primers using methylmalonyl-CoA and NADPH to produce multimethyl-branched mycocerosic acids. The enzyme was specific for methylmalonyl-CoA and would not incorporate malonyl-CoA into fatty acids. It elongated n-C6 to n-C20 CoA esters to generate primarily the corresponding tetramethyl-branched mycocerosic acids. Exogenous [1-14C]acyl-CoA and trideuteromethylmalonyl-CoA were incorporated into the multimethyl-branched fatty acids. Dodecyl sulfate electrophoresis showed that the enzyme had a molecular weight of 238,000, whereas gel filtration showed a native molecular weight of 490,000, indicating that the enzyme is composed of two monomers of identical molecular weight. The enzyme contained an acyl carrier protein-like segment as indicated by incorporation of [1-14C] pantothenate into the 238-kDa protein and production of 1 mol of taurine/mol of the monomer upon hydrolysis of performic acid-oxidized enzyme. It is concluded that the mycocerosic acid synthase is a multifunctional enzyme similar to the well-characterized multifunctional fatty acid synthases except for the substrate specificity.[1]

References

 
WikiGenes - Universities