The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Interaction of insecticides with lipid membranes.

The permeability of liposome membranes is increased by organophosphorus and organochlorinated insecticides at concentrations of 10(-5)--10(-4) M. The order of effectiveness is similar to the toxicity of the compounds to mammals, and is the following for permeation of non-electrolytes and for valinomycin-induced permeation of K+: parathion greater than 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) approximately aldrin greater than malathion greater than lindane. The degree of effectiveness for X-537A-induced permeation of Ca2+ was the following: aldrin greater than or equal to DDT greater than parathion greater than malathion greater than lindane. The organophosphorus compound, ethyl azinphos (10(-4) M), dramatically increases the permeability of liposome membranes to all the tested substances, probably as a consequence of surfactant effects. Some organochlorinated insecticides appear to react with cation ionophores and modulate their motion across lipid membranes. It is suggested that the insecticides may exert some of their toxic actions by modifying certain mechanisms in the cell membrane.[1]

References

  1. Interaction of insecticides with lipid membranes. Antunes-Madeira, M.C., Madeira, V.M. Biochim. Biophys. Acta (1979) [Pubmed]
 
WikiGenes - Universities