The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Steady-state kinetics and inhibition studies of the aldol condensation reaction catalyzed by bovine liver and Escherichia coli 2-keto-4-hydroxyglutarate aldolase.

Two sensitive assays, one which fluorometrically measures only the L isomer of 2-keto-4-hydroxyglutarate after decarboxylation to L-malate and the other which spectrophotometrically determines both enantiomers by reductive amination with glutamate dehydrogenase, are described. By use of these assays, the steady-state kinetics of the aldol condensation of pyruvate with glyoxylate, as catalyzed by 2-keto-4-hydroxyglutarate aldolase from either bovine liver or Escherichia coli, were studied as was the inhibition of this reaction by glyoxylate and other anions. For the E. coli aldolase, double-reciprocal plots are linear except at high (above 5 mM) glyoxylate concentrations; apparent Km values increase with increasing concentrations of the fixed substrate. The data are consistent with an ordered reaction sequence. Inhibition by halides follows the lyotropic or Hofmeister series. Esters are not good inhibitors; mono-, di-, and tricarboxylic acids are increasingly inhibitory. Of the substrate analogues tested, hydroxypyruvate is the most potent inhibitor. Inhibition studies with citrate, acetaldehyde, and glyoxylate (all competitive inhibitors) suggest there are two domains at the active site-the Schiff base forming lysyl residue which interacts with carbonyl analogues (like acetaldehyde) and a center of positive charge which binds anions (like citrate). In contrast to the bacterial enzyme, liver 2-keto-4-hydroxyglutarate aldolase is inhibited in a competitive manner by much lower concentrations (0.1 mM or even lower) of glyoxylate. Many salts and some carboxylic acids activate the liver enzyme. Similarly, substrate analogues like 2-ketobutyrate and fluoropyruvate are mild activators; no effect is seen with acetaldehyde. Besides glyoxylate, only glyoxal, 2-ketoglutarate, and hydroxypyruvate inhibit the aldol condensation reaction. A uniform value of 1 is found for the number of inhibitor molecules bound per active site of either liver or E. coli 2-keto-4-hydroxyglutarate aldolase.[1]

References

 
WikiGenes - Universities