The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus.

The initial steps of sorbitol catabolism were studied in 4 strains of Actinomyces naeslundii and Actinomyces viscosus that had been isolated from human dental plaque. Cell-free extracts were prepared from cells grown in the presence of either sorbitol, xylitol or glucose. The extracts from all strains grown on sorbitol had nicotinamide adenine dinucleotide-linked dehydrogenase activities for sorbitol and xylitol and reduced nicotinamide adenine dinucleotide-linked reductase activities for fructose and xylulose. Two of the strains also exhibited these activities when grown in the presence of xylitol, and all glucose-grown cells lacked them. The results indicate that sorbitol metabolism in oral actinomyces involve oxidation of sorbitol to fructose by an inducible enzyme, nicotinamide adenine dinucleotide-linked sorbitol dehydrogenase. This step is followed by the phosphorylation of fructose with guanosine triphosphate as a main phosphoryl donor. Thus, the initial catabolic pathway of sorbitol in A. naeslundii and A. viscosus is different from those described for other oral bacteria.[1]

References

  1. Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus. Kalfas, S., Takahashi, N., Yamada, T. Oral Microbiol. Immunol. (1994) [Pubmed]
 
WikiGenes - Universities