The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli.

Aerobic life-style offers both benefits and risks to living cells. The major risk comes from the formation of reactive oxygen intermediates (i.e. superoxide radical, O2-; hydrogen peroxide, H2O2; and hydroxyl radical, OH.) during normal oxygen metabolism. However, living cells are able to cope with oxygen toxicity by virtue of a unique set of antioxidant enzymes that scavenge O2- and H2O2, and prevent the formation OH.. Superoxide dismutases (SODs; EC are metalloenzymes essential for aerobic survival. Escherichia coli contains two forms of this enzyme: an iron-containing enzyme (FeSOD) and a manganese-containing enzyme (MnSOD). In E. coli, MnSOD biosynthesis is under rigorous control. The enzyme is induced in response to a variety of environmental stress conditions including exposure to oxygen, redox cycling compounds such as paraquat which exacerbate the level of intracellular superoxide radicals, iron chelation (i.e. iron deprivation), and oxidants. A model for the regulation of the MnSOD has been proposed in which the MnSOD gene (sodA) is negatively regulated at the level of transcription by an iron-containing redox-sensitive repressor protein. The effect of iron-chelation most probably results in removal of the iron necessary for repressor activity. Recent studies have shown that sodA expression is regulated by three iron-dependent regulatory proteins, Fur (ferric uptake regulation), Fnr (fumarate nitrate regulation) and SoxR (superoxide regulon), and by the ArcA/ArcB (aerobic respiration control) system. The potential Fur-, Fnr- and ArcA- binding sites in the sodA promoter region have been identified by using different cis-acting regulatory mutations that caused anaerobic derepression of the gene.(ABSTRACT TRUNCATED AT 250 WORDS)[1]


WikiGenes - Universities