Pentoxifylline, a phosphodiesterase inhibitor, induces immune deviation in patients with multiple sclerosis.
The outcome of immune responses can be predicted by the lymphokine production pattern of the participating cells. Cytokines of the T helper type 1 (Th1) cells mediate inflammatory responses and delayed-type hypersensitivity (DTH), whereas Th2-like T cells predominantly produce cytokines, which stimulate antibody production by B cells. Immunoregulatory therapy of autoimmune diseases with unknown antigens may be achieved by inhibiting the production of inflammatory cytokines and induction of protective cytokines of Th2-like T cells. To determine the immunoregulatory capacity of the phosphodiesterase inhibitor pentoxifylline (PTX), which is known to suppress the production of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma), this drug was used in mitogen and antigen-stimulated lymphocyte cultures as well as in patients with multiple sclerosis. PTX significantly decreased TNF-alpha and interleukin-12 (IL-12), whereas it increased IL-4 and IL-10 production. In addition, PTX inhibited cell proliferation, which was associated with a marked reduction in CD25 ( IL-2 receptor alpha-chain) and CD54 (intercellular adhesion molecule-1; ICAM-1) expression. Increasing doses of PTX significantly reduced TNF-alpha and IL-12 mRNA expression of blood mononuclear cells, but increased IL-4 and IL-10 expression in eight patients with relapsing-remitting multiple sclerosis. These results indicate that PTX modulates immune reactions favouring a Th2-like response and may therefore be useful for the treatment of autoimmune diseases with a dominant Th1-like T cell response.[1]References
- Pentoxifylline, a phosphodiesterase inhibitor, induces immune deviation in patients with multiple sclerosis. Rieckmann, P., Weber, F., Günther, A., Martin, S., Bitsch, A., Broocks, A., Kitze, B., Weber, T., Börner, T., Poser, S. J. Neuroimmunol. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg