The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Stereoselective reversible ketone formation from 10-hydroxylated nortriptyline metabolites in human liver.

1. E- and Z-10-hydroxynortriptyline are major metabolites of amitriptyline and nortriptyline in man. Upon incubation with human liver microsomes or cytosol, these metabolites were oxidized to the corresponding ketones, E- and Z-10-oxonortriptyline. (+)-E- and (+)-Z-10-hydroxynortriptyline were distinctly preferred over the (-)-isomers as substrates. NADP+ supported the oxidation in cytosol, whereas in microsomes NAD+ was the best cofactor. 2. Incubation of E- and Z-10-oxonortriptyline with NADPH and cytosol resulted in the nearly exclusive formation of (+)-E- and (+)-Z-10-hydroxynortriptyline. Kinetic analysis revealed high-affinity reduction (K(m) 1-2 microM) of the two ketones and an additional low-affinity component with the E-isomer. 10-Oxonortriptyline reduction was also catalysed by rabbit, but not by rat or guinea pig liver cytosol. 3. With [4-3H]NADPH as cosubstrate, tritium was incorporated into E- and Z-10-hydroxynortriptyline preferentially from the pro-4R position. Redox cycling of (+)-E- and (+)-Z-10-hydroxynortriptyline in cytosol in the presence of NAD- and NADPH was indicated by 3H incorporation from [pro-4R-3H]NADPH. 4. Recombinant human carbonyl reductase catalysed low-affinity reduction of E-10-oxonortriptyline with preferential transfer of the pro-4S-3H of labelled NADPH. 5. Ketone reduction in cytosol was strongly inhibited by 9,10-phenanthrenequinone and dehydrolithocholic acid and moderately by other 3-oxo steroids and some anti-inflammatory drugs. 6. The high-affinity reduction of E- and Z-10-oxonortriptyline and the oxidation of the alcohols in cytosol are probably mediated by a member of the aldo-keto reductase family of enzymes.[1]

References

 
WikiGenes - Universities