The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

tRNA-His  -  tRNA

Kazachstania servazzii

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of tRNA-His

 

High impact information on tRNA-His

  • Our results show that, under competing 'in vivo' conditions, the Drosophila tRNAHis with the anticodon GUG clearly prefers the histidine codon CAC to the codon CAU, whereas little preference is observed for the tRNAHis with the anticodon QUG for the codon CAU, and no preference for either codon by the two yeast isoacceptors [1].
  • Queuosine modification of the wobble base in tRNAHis influences 'in vivo' decoding properties [1].
  • The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes [4].
  • PIVB RNA mainly contained tRNAArg (51.8%), tRNALys (17.1%), and tRNAHis (9.2%) which together accounted for 78% of the total PIVB tRNA [5].
  • Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity [2].
 

Biological context of tRNA-His

References

 
WikiGenes - Universities