The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

EIF2S2  -  eukaryotic translation initiation factor 2...

Homo sapiens

Synonyms: EIF2, EIF2B, EIF2beta, Eukaryotic translation initiation factor 2 subunit 2, Eukaryotic translation initiation factor 2 subunit beta, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

High impact information on EIF2S2


Biological context of EIF2S2


Anatomical context of EIF2S2


Associations of EIF2S2 with chemical compounds

  • Thus, rather than allosterically regulating eIF2gamma-G domain function via eIF2beta, our data support a model in which the GTPase-activating factor eIF5 and the guanine-nucleotide exchange factor eIF2B modulate eIF2 function through direct interactions with the eIF2gamma-G domain [2].
  • Both Co-eIF-2 alpha and Co-eIF-2 beta are heat-stable factors that stimulate ternary complex formation in the presence and absence of Mg2+ and overcome the inhibitory effect of aurintricarboxylic acid [10].
  • SRD1 encodes a putative 225 amino acid, 26 kDa protein containing a C2/C2 zinc finger motif that is also found in some transcription regulators and the eIF-2 beta translation initiating factors [11].
  • Our studies indicate that the cysteine residues and the intervening amino acids of this motif are essential for eIF-2 beta function in translation initiation in vivo [7].
  • This inhibition is relieved upon addition of ATP, showing that Cibacron blue 3G-A competes with ATP for eIF-2. eIF-2 beta subunit, active in binding of mRNA, is recovered upon chromatography of eIF-2 in denaturing conditions over matrix-bound Cibacron blue 3G-A [12].

Other interactions of EIF2S2

  • The stimulatory effects of Co-eIF-2 alpha and Co-eIF-2 beta on the ternary complex formation are close to additive, strongly suggesting that the two factors function independently [10].
  • Spots identified as eukaryotic initiation factor (eIF) 2 alpha, eIF-2 beta, eIF-2 gamma, eIF-4A, and four eIF-3 proteins of less than 50,000 Da corresponded to moderately abundant lysate proteins [13].
  • The IF5-CTD interacts directly with the translation initiation factors eIF1, eIF2-beta, and eIF3c, thus forming together with eIF2 bound Met-tRNA(i)(Met) the MFC [14].
  • There were no reproducible, significant changes in eIF-4A, eIF-4B, or eIF-2 beta in cells infected by any of these viruses [15].


  1. Structure of the beta subunit of translational initiation factor eIF-2. Pathak, V.K., Nielsen, P.J., Trachsel, H., Hershey, J.W. Cell (1988) [Pubmed]
  2. Direct Binding of Translation Initiation Factor eIF2{gamma}-G Domain to Its GTPase-activating and GDP-GTP Exchange Factors eIF5 and eIF2B{epsilon}. Alone, P.V., Dever, T.E. J. Biol. Chem. (2006) [Pubmed]
  3. DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. Ting, N.S., Kao, P.N., Chan, D.W., Lintott, L.G., Lees-Miller, S.P. J. Biol. Chem. (1998) [Pubmed]
  4. A difference in the rate of ribosomal elongation balances the synthesis of eukaryotic translation initiation factor (eIF)-2 alpha and eIF-2 beta. Chiorini, J.A., Boal, T.R., Miyamoto, S., Safer, B. J. Biol. Chem. (1993) [Pubmed]
  5. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. Das, S., Ghosh, R., Maitra, U. J. Biol. Chem. (2001) [Pubmed]
  6. Regulation of eIF-2 alpha-subunit phosphorylation in reticulocyte lysate. Chakraborty, A., Saha, D., Bose, A., Chatterjee, M., Gupta, N.K. Biochemistry (1994) [Pubmed]
  7. Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the beta subunit of eukaryotic translation initiation factor 2. Castilho-Valavicius, B., Thompson, G.M., Donahue, T.F. Gene Expr. (1992) [Pubmed]
  8. Cloning of cDNA for the beta-subunit of rabbit translation initiation factor-2 using PCR. Price, N.T., Hall, L., Proud, C.G. Biochim. Biophys. Acta (1993) [Pubmed]
  9. Regulation of eukaryotic translation initiation factor expression during T-cell activation. Boal, T.R., Chiorini, J.A., Cohen, R.B., Miyamoto, S., Frederickson, R.M., Sonenberg, N., Safer, B. Biochim. Biophys. Acta (1993) [Pubmed]
  10. Factors from wheat germ that enhance the activity of eukaryotic initiation factor eIF-2. Isolation and characterization of Co-eIF-2 alpha. Osterhout, J.J., Lax, S.R., Ravel, J.M. J. Biol. Chem. (1983) [Pubmed]
  11. SRD1, a S. cerevisiae gene affecting pre-rRNA processing contains a C2/C2 zinc finger motif. Hess, S.M., Stanford, D.R., Hopper, A.K. Nucleic Acids Res. (1994) [Pubmed]
  12. Binding of ATP and messenger RNA by the beta-subunit of eukaryotic initiation factor 2. Gonsky, R., Itamar, D., Harary, R., Kaempfer, R. Biochimie (1992) [Pubmed]
  13. Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis. Duncan, R., Hershey, J.W. J. Biol. Chem. (1983) [Pubmed]
  14. The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5. Bieniossek, C., Schütz, P., Bumann, M., Limacher, A., Uson, I., Baumann, U. J. Mol. Biol. (2006) [Pubmed]
  15. Protein synthesis initiation factor modifications during viral infections: implications for translational control. Duncan, R.F. Electrophoresis (1990) [Pubmed]
WikiGenes - Universities