The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs5213  -  cytochrome b(562)

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs5213

 

High impact information on ECs5213

 

Chemical compound and disease context of ECs5213

 

Biological context of ECs5213

  • For example, the correct fold is straightforwardly obtained for the four-helix bundle protein cytochrome b562, while the double EF-hand motif of calbindin D9k is hardly obtained without ambiguity [10].
 

Associations of ECs5213 with chemical compounds

  • Previous work has shown that, in variants of cytochrome b562 containing the H102M mutation, methionine residues provide both axial ligands to the heme iron [11].
  • Consistently, binding of avidin to biotinylated single-Cys replacements in loop VIII/IX or loop X/XI blocks 4B11 binding, but avidin binding to biotinylated Cys residues in other cytoplasmic loops or insertion of cytochrome b562 into cytoplasmic loop VI/VII has no significant effect [12].
  • We have introduced cysteine residues into the amino acid sequence of cytochrome b562 in positions homologous to those found in the other members of the family, generating the ubiquitous heme-binding peptide (-C-X-Y-C-H-) found in virtually all c-type cytochromes [13].
 

Analytical, diagnostic and therapeutic context of ECs5213

References

  1. Early events in the folding of four-helix-bundle heme proteins. Faraone-Mennella, J., Gray, H.B., Winkler, J.R. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  2. Crystallization of cytochrome b562 from Erwinia chrysanthemi. Wilkinson, K.W., Ford, G.C., Moir, A.J., Rice, D.W., Rodgers, H.F., Smith, J.M., Stillman, T.J., Goward, C.R. Acta Crystallogr. D Biol. Crystallogr. (1997) [Pubmed]
  3. The role of turns in the structure of an alpha-helical protein. Brunet, A.P., Huang, E.S., Huffine, M.E., Loeb, J.E., Weltman, R.J., Hecht, M.H. Nature (1993) [Pubmed]
  4. Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer. Hay, S., Wallace, B.B., Smith, T.A., Ghiggino, K.P., Wydrzynski, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  5. A cytochrome b562 variant with a c-type cytochrome CXXCH heme-binding motif as a probe of the Escherichia coli cytochrome c maturation system. Allen, J.W., Barker, P.D., Ferguson, S.J. J. Biol. Chem. (2003) [Pubmed]
  6. Sequence determinants of C-terminal substrate recognition by the Tsp protease. Keiler, K.C., Sauer, R.T. J. Biol. Chem. (1996) [Pubmed]
  7. Refined structure of cytochrome b562 from Escherichia coli at 1.4 A resolution. Hamada, K., Bethge, P.H., Mathews, F.S. J. Mol. Biol. (1995) [Pubmed]
  8. Structural consequences of b- to c-type heme conversion in oxidized Escherichia coli cytochrome b562. Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., Woodyear, T.L., Johnson, C.M., Barker, P.D. Biochemistry (2000) [Pubmed]
  9. The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus. Allen, J.W., Leach, N., Ferguson, S.J. Biochem. J. (2005) [Pubmed]
  10. Efficiency of paramagnetism-based constraints to determine the spatial arrangement of alpha-helical secondary structure elements. Bertini, I., Longinetti, M., Luchinat, C., Parigi, G., Sgheri, L. J. Biomol. NMR (2002) [Pubmed]
  11. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions. Barker, P.D., Freund, S.M. Biochemistry (1996) [Pubmed]
  12. The last two cytoplasmic loops in the lactose permease of Escherichia coli comprise a discontinuous epitope for a monoclonal antibody. Sun, J., Li, J., Carrasco, N., Kaback, H.R. Biochemistry (1997) [Pubmed]
  13. Conversion of cytochrome b562 to c-type cytochromes. Barker, P.D., Nerou, E.P., Freund, S.M., Fearnley, I.M. Biochemistry (1995) [Pubmed]
  14. Circular dichroism and resonance Raman studies of cytochrome b562 from Escherichia coli. Bullock, P.A., Myer, Y.P. Biochemistry (1978) [Pubmed]
  15. Two-dimensional crystallization of Escherichia coli lactose permease. Zhuang, J., Privé, G.G., Werner, G.E., Ringler, P., Kaback, H.R., Engel, A. J. Struct. Biol. (1999) [Pubmed]
  16. Cloning and expression of the gene encoding the soluble cytochrome b562 of Escherichia coli. Nikkila, H., Gennis, R.B., Sligar, S.G. Eur. J. Biochem. (1991) [Pubmed]
 
WikiGenes - Universities