The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

cysteinate(1-)     2-amino-3-sulfanyl-propanoate

Synonyms: AC1NUTZJ, Cys(-), CHEBI:32456, AKOS015900848, I14-15565, ...
This record was replaced with 594.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of carbocysteine


Psychiatry related information on carbocysteine


High impact information on carbocysteine

  • We identified in HSCR patients a G-->T missense mutation in EDNRB exon 4 that substitutes the highly conserved Trp-276 residue in the fifth transmembrane helix of the G protein-coupled receptor with a Cys residue (W276C) [11].
  • A Phe to Cys substitution in MCT1 converts it to Mev, a mevalonate transporter [12].
  • The chordin gene encodes a novel protein of 941 amino acids that has a signal sequence and four Cys-rich domains [13].
  • We have sequenced the tyrosinase-related protein-1 cDNA encoded at this locus from Light mice and found that it contains a single base alteration from wild-type, causing an Arg to Cys change in the protein [14].
  • Significantly, the bmi-1 gene, which is expressed in diverse normal cells, encodes a Cys/His metal-binding motif (C3HC4) that resembles those in several DNA-binding proteins and defines a new category of zinc finger gene [15].

Chemical compound and disease context of carbocysteine


Biological context of carbocysteine

  • This motif includes the essential active-site residues Cys 12 and Arg 18 and bears striking similarities to the active-site motif recently described in the structure of human PTP1B [21].
  • RTA also autoregulated its own polyubiquitination and stability, and both activities were abolished by point mutations in a Cys plus His-rich N-terminal domain [22].
  • In fact, a monoclonal antibody specific for the tandem repeat in the trans-sialidase COOH terminus enhanced infection of BALB/c mice, in agreement with earlier experiments in vitro, whereas antibodies against an amino acid sequence in the Cys region had the opposite effect [23].
  • Single amino acid substitutions replacing Arg 201 with either Cys, His, or Gln 227 with either Arg or Leu of the alpha-subunit of the Gs gene were identified in one third of growth hormone (GH)-secreting adenomas [24].
  • In human airway smooth muscle cells that natively express beta2AR, receptor expression was approximately twofold higher in those bearing the Cys versus the Arg polymorphism, confirming the phenotype in a relevant cell type [25].

Anatomical context of carbocysteine

  • These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester-mediated translocation of proteins to selective lipid membranes [26].
  • Mutation of Cys 30 and Cys 45 to Ala results in a loss of palmitoylation but does not significantly alter membrane association of GAD65 in COS-7 cells [27].
  • Cloning of the tetrapeptide Cys Ala Ile Met to the carboxy terminus of human lamin C resulted in lamin being found in a nuclear envelope-associated form in oocytes [28].
  • The results suggest that amino acids 24-31 are required for hydrophobic modification and/or targeting of GAD65 to membrane compartments, whereas palmitoylation of Cys 30 and Cys 45 may rather serve to orient or fold the protein at synaptic vesicle membranes [27].
  • Here we demonstrate that each of 12 different familial ALS-mutant SOD1s with widely differing biophysical properties are associated with mitochondria of motoneuronal cells to a much greater extent than wild-type SOD1, and that this effect may depend on the oxidation of Cys residues [29].

Associations of carbocysteine with other chemical compounds

  • Two independent lines of evidence demonstrate that at least two of these acidic residues are directly involved in coordinating a divalent metal ion: The substitution of Cys for Asp allows rescue of some catalytic function, whereas an alanine substitution is no longer subject to iron-induced hydroxyl radical cleavage [30].
  • We conclude that the region surrounding the M1 Cys is involved in the gating of the nicotinic acetylcholine receptor and that the gamma subunit contributes significantly to the control of channel closure [31].
  • The rho1-104 mutation caused amino acid substitutions of Asp 72 to Asn and Cys 164 to Tyr of Rho1p [32].
  • A common theme among these three unrelated clans of serine proteases is the development or maintenance of a catalytic tetrad, the fourth member of which is a Ser or Cys whose side chain helps stabilize other residues of the standard catalytic triad [33].
  • Thus, DsbB can mediate electron flow from DsbA to ubiquinone irrespective of the intrinsic redox potential of the Cys residues involved [34].

Gene context of carbocysteine

  • Cys 1 bidentally coordinates this zinc, and the Thr-2 side chain extends into the large specificity pocket of MMP-3 [35].
  • This mutation (replacement of Arg24 by Cys) was first found in patients with hereditary melanoma and renders Cdk4 insensitive to INK4 inhibitors [36].
  • Finally, we determined that only the first of the two active-site Cys residues in ATTRX5 is required for the response to victorin, suggesting that ATTRX5 function in the victorin pathway involves an atypical mechanism of action [37].
  • In addition to negatively regulating RPS2 activity, RIN4 is also a target of AvrRpt2, a Cys protease and cognate bacterial effector protein of RPS2 [38].
  • TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue [39].

Analytical, diagnostic and therapeutic context of carbocysteine

  • The heterodimer is stabilized by a segment of the beta-subunit which wraps around the alpha-subunit and is covalently linked like a seat belt by the disulphide Cys 26-Cys 110 [40].
  • The derivative, T4 lysozyme (Ile3----Cys), was prepared by substituting a Cys codon for an Ile codon at position 3 in the cloned lysozyme gene by means of oligonucleotide-dependent, site-directed mutagenesis [41].
  • We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants [42].
  • More importantly, two genes, Os CP1 and Os c6, encoding a Cys protease and a protease inhibitor, respectively, were shown to be the likely direct targets of TDR through chromatin immunoprecipitation analyses and the electrophoretic mobility shift assay [43].
  • This result enables the facile preparation of a 64-residue peptide (alpha)thioester; this segment is joined by native chemical ligation to a 66-aa Cys peptide, to yield the target 130-aa polypeptide chain [44].


  1. Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Rice, W.G., Turpin, J.A., Huang, M., Clanton, D., Buckheit, R.W., Covell, D.G., Wallqvist, A., McDonnell, N.B., DeGuzman, R.N., Summers, M.F., Zalkow, L., Bader, J.P., Haugwitz, R.D., Sausville, E.A. Nat. Med. (1997) [Pubmed]
  2. Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Mazel, D., Marlière, P. Nature (1989) [Pubmed]
  3. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Stuckey, J.A., Schubert, H.L., Fauman, E.B., Zhang, Z.Y., Dixon, J.E., Saper, M.A. Nature (1994) [Pubmed]
  4. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Guan, K.L., Broyles, S.S., Dixon, J.E. Nature (1991) [Pubmed]
  5. A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor. He, J.J., Quiocho, F.A. Science (1991) [Pubmed]
  6. Monitoring 2-D gel-induced modifications of proteins by MALDI-TOF mass spectrometry. Hamdan, M., Galvani, M., Righetti, P.G. Mass spectrometry reviews. (2001) [Pubmed]
  7. Codon 311 (Cys --> Ser) polymorphism of paraoxonase-2 gene is associated with apolipoprotein E4 allele in both Alzheimer's and vascular dementias. Janka, Z., Juhász, A., Rimanóczy A, A., Boda, K., Márki-Zay, J., Kálmán, J. Mol. Psychiatry (2002) [Pubmed]
  8. Cysteine modification by lipid peroxidation products inhibits protein disulfide isomerase. Carbone, D.L., Doorn, J.A., Kiebler, Z., Petersen, D.R. Chem. Res. Toxicol. (2005) [Pubmed]
  9. A Cys 23-Ser 23 substitution in the 5-HT(2C) receptor gene influences body weight regulation in females with seasonal affective disorder: an Austrian-Canadian collaborative study. Praschak-Rieder, N., Willeit, M., Zill, P., Winkler, D., Thierry, N., Konstantinidis, A., Masellis, M., Basile, V.S., Bondy, B., Ackenheil, M., Neumeister, A., Kaplan, A.S., Kennedy, J.L., Kasper, S., Levitan, R. Journal of psychiatric research. (2005) [Pubmed]
  10. Dopamine receptor D2 and D3 gene variants are not associated with the antidepressant effect of total sleep deprivation in bipolar depression. Benedetti, F., Serretti, A., Colombo, C., Lilli, R., Lorenzi, C., Smeraldi, E. Psychiatry research. (2003) [Pubmed]
  11. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Puffenberger, E.G., Hosoda, K., Washington, S.S., Nakao, K., deWit, D., Yanagisawa, M., Chakravart, A. Cell (1994) [Pubmed]
  12. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Garcia, C.K., Goldstein, J.L., Pathak, R.K., Anderson, R.G., Brown, M.S. Cell (1994) [Pubmed]
  13. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L.K., De Robertis, E.M. Cell (1994) [Pubmed]
  14. Light is a dominant mouse mutation resulting in premature cell death. Johnson, R., Jackson, I.J. Nat. Genet. (1992) [Pubmed]
  15. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Haupt, Y., Alexander, W.S., Barri, G., Klinken, S.P., Adams, J.M. Cell (1991) [Pubmed]
  16. Site-directed alkylation and the alternating access model for LacY. Kaback, H.R., Dunten, R., Frillingos, S., Venkatesan, P., Kwaw, I., Zhang, W., Ermolova, N. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  17. Genetically engineered zinc-chelating adenylate kinase from Escherichia coli with enhanced thermal stability. Perrier, V., Burlacu-Miron, S., Bourgeois, S., Surewicz, W.K., Gilles, A.M. J. Biol. Chem. (1998) [Pubmed]
  18. Identification of the signal peptidase cleavage site in Bacillus licheniformis prepenicillinase. Chang, C.N., Nielsen, J.B., Izui, K., Blobel, G., Lampen, J.O. J. Biol. Chem. (1982) [Pubmed]
  19. Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing, ligand binding, and activation of the receptor. Yoshimura, A., Zimmers, T., Neumann, D., Longmore, G., Yoshimura, Y., Lodish, H.F. J. Biol. Chem. (1992) [Pubmed]
  20. Sugar transport by the bacterial phosphotransferase system. Characterization of the Escherichia coli enzyme I monomer/dimer equilibrium by fluorescence anisotropy. Chauvin, F., Brand, L., Roseman, S. J. Biol. Chem. (1994) [Pubmed]
  21. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Su, X.D., Taddei, N., Stefani, M., Ramponi, G., Nordlund, P. Nature (1994) [Pubmed]
  22. The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Yu, Y., Wang, S.E., Hayward, G.S. Immunity (2005) [Pubmed]
  23. Trypanosoma cruzi trans-sialidase: enhancement of virulence in a murine model of Chagas' disease. Chuenkova, M., Pereira, M.E. J. Exp. Med. (1995) [Pubmed]
  24. G-proteins and hormonal signalling in human pituitary tumors: genetic mutations and functional alterations. Spada, A., Vallar, L., Faglia, G. Frontiers in neuroendocrinology. (1993) [Pubmed]
  25. Polymorphisms of the 5' leader cistron of the human beta2-adrenergic receptor regulate receptor expression. McGraw, D.W., Forbes, S.L., Kramer, L.A., Liggett, S.B. J. Clin. Invest. (1998) [Pubmed]
  26. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. Oancea, E., Teruel, M.N., Quest, A.F., Meyer, T. J. Cell Biol. (1998) [Pubmed]
  27. Amino acid residues 24-31 but not palmitoylation of cysteines 30 and 45 are required for membrane anchoring of glutamic acid decarboxylase, GAD65. Shi, Y., Veit, B., Baekkeskov, S. J. Cell Biol. (1994) [Pubmed]
  28. The conserved carboxy-terminal cysteine of nuclear lamins is essential for lamin association with the nuclear envelope. Krohne, G., Waizenegger, I., Höger, T.H. J. Cell Biol. (1989) [Pubmed]
  29. Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Ferri, A., Cozzolino, M., Crosio, C., Nencini, M., Casciati, A., Gralla, E.B., Rotilio, G., Valentine, J.S., Carrì, M.T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  30. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Kim, D.R., Dai, Y., Mundy, C.L., Yang, W., Oettinger, M.A. Genes Dev. (1999) [Pubmed]
  31. Role of a key cysteine residue in the gating of the acetylcholine receptor. Lo, D.C., Pinkham, J.L., Stevens, C.F. Neuron (1991) [Pubmed]
  32. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. Yamochi, W., Tanaka, K., Nonaka, H., Maeda, A., Musha, T., Takai, Y. J. Cell Biol. (1994) [Pubmed]
  33. Molecular markers of serine protease evolution. Krem, M.M., Di Cera, E. EMBO J. (2001) [Pubmed]
  34. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. Inaba, K., Ito, K. EMBO J. (2002) [Pubmed]
  35. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Gomis-Rüth, F.X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G.P., Bartunik, H., Bode, W. Nature (1997) [Pubmed]
  36. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. Sotillo, R., Dubus, P., Martín, J., de la Cueva, E., Ortega, S., Malumbres, M., Barbacid, M. EMBO J. (2001) [Pubmed]
  37. Thioredoxin h5 Is Required for Victorin Sensitivity Mediated by a CC-NBS-LRR Gene in Arabidopsis. Sweat, T.A., Wolpert, T.J. Plant Cell (2007) [Pubmed]
  38. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Day, B., Dahlbeck, D., Huang, J., Chisholm, S.T., Li, D., Staskawicz, B.J. Plant Cell (2005) [Pubmed]
  39. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Hemsley, P.A., Kemp, A.C., Grierson, C.S. Plant Cell (2005) [Pubmed]
  40. Crystal structure of human chorionic gonadotropin. Lapthorn, A.J., Harris, D.C., Littlejohn, A., Lustbader, J.W., Canfield, R.E., Machin, K.J., Morgan, F.J., Isaacs, N.W. Nature (1994) [Pubmed]
  41. Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Perry, L.J., Wetzel, R. Science (1984) [Pubmed]
  42. Tobacco WLIM1 Is a Novel F-Actin Binding Protein Involved in Actin Cytoskeleton Remodeling. Thomas, C., Hoffmann, C., Dieterle, M., Van Troys, M., Ampe, C., Steinmetz, A. Plant Cell (2006) [Pubmed]
  43. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., Zhang, D.B. Plant Cell (2006) [Pubmed]
  44. Convergent chemical synthesis and high-resolution x-ray structure of human lysozyme. Durek, T., Torbeev, V.Y., Kent, S.B. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
WikiGenes - Universities