The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

selD  -  selenophosphate synthase

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK1762, JW1753, fdhB
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of selD

  • The selD gene from Escherichia coli, whose product is involved in selenium metabolism, has been cloned and sequenced. selD codes for a protein of 347 amino acids with a calculated molecular weight of 36,687 [1].
  • Analysis of the selD gene product through expression of the gene in the phage T7 promoter/polymerase system confirmed the predicted molecular weight of the protein [1].
 

High impact information on selD

 

Chemical compound and disease context of selD

 

Biological context of selD

  • The biological activities of the wild type and mutant proteins were studied using E. coli MB08 (selD-) transformed with plasmids containing the selD genes [8].
  • The products of the orf183 and topB genes were required neither for selenoprotein biosynthesis nor for selenation of tRNAs. selAB transcription was driven by a single, weak promoter; however, two major selD operon transcripts were identified [9].
  • The open reading frame located downstream of R. capsulatus putR exhibited strong homology to the E. coli selD gene, which is involved in selenium metabolism [10].
  • R. capsulatus selD mutants exhibited a Put+ phenotype, demonstrating that selD is required neither for viability nor for proline utilization [10].
 

Associations of selD with chemical compounds

 

Other interactions of selD

 

Analytical, diagnostic and therapeutic context of selD

References

  1. In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E., Böck, A. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  2. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Yuan, J., Palioura, S., Salazar, J.C., Su, D., O'donoghue, P., Hohn, M.J., Cardoso, A.M., Whitman, W.B., S??ll, D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins. Lacourciere, G.M., Levine, R.L., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  4. Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism. Walker, H., Ferretti, J.A., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Kim, I.Y., Guimarães, M.J., Zlotnik, A., Bazan, J.F., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  6. Fetal mouse selenophosphate synthetase 2 (SPS2): biological activities of mutant forms in Escherichia coli. Kim, T.S., Yu, M.H., Chung, Y.W., Kim, J., Choi, E.J., Ahn, K., Kim, I.Y. Mol. Cells (1999) [Pubmed]
  7. Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization. Kim, I.Y., Veres, Z., Stadtman, T.C. J. Biol. Chem. (1993) [Pubmed]
  8. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide. Kim, I.Y., Veres, Z., Stadtman, T.C. J. Biol. Chem. (1992) [Pubmed]
  9. Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme. Sawers, G., Heider, J., Zehelein, E., Böck, A. J. Bacteriol. (1991) [Pubmed]
  10. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. Keuntje, B., Masepohl, B., Klipp, W. J. Bacteriol. (1995) [Pubmed]
  11. Bacterial selenocysteine synthase--structural and functional properties. Tormay, P., Wilting, R., Lottspeich, F., Mehta, P.K., Christen, P., Böck, A. Eur. J. Biochem. (1998) [Pubmed]
  12. Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase. Wolfe, M.D., Ahmed, F., Lacourciere, G.M., Lauhon, C.T., Stadtman, T.C., Larson, T.J. J. Biol. Chem. (2004) [Pubmed]
  13. Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Kim, I.Y., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities