The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Compressive Strength

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Compressive Strength

  • Tibolone, 500 microg, resulted in 10% greater cortical strength of femur (p < or = 0.05) and 60% greater compressive strength of L4 (p < or = 0.05) compared with vehicle-treated OVX rats [1].
  • Biomechanical testing demonstrated that PDGF administration increased the vertebral body compressive strength and femoral shaft torsional stiffness and resulted in a trend for enhanced femoral head shearing strength [2].
  • Incorporation of 1.56% w/w CPP-ACP into the GIC significantly increased microtensile bond strength (33%) and compressive strength (23%) and significantly enhanced the release of calcium, phosphate, and fluoride ions at neutral and acidic pH [3].
  • Withdrawal of PTH decreased the compressive strength and competence to control values [4].
  • Compared with the control group, bone mineral density, compressive strength and stiffness were significantly higher in ibandronate-treated animals, whereas no changes occurred in strain or modulus of elasticity [5].
 

Biological context of Compressive Strength

 

Associations of Compressive Strength with chemical compounds

 

Gene context of Compressive Strength

  • Parathyroid hormone (1-34) increases vertebral bone mass, compressive strength, and quality in old rats [12].
  • Dispersion of 5 wt % of rod-like hydroxyapatite and CaTiO3 powders with alpha-TCP cement containing 5 wt % gelatin gel increased the compressive strength after 1 week from 14.1 to 31.3 and 34.8 MPa, respectively [13].
  • The hardening properties of calcium phosphate cements in the CaHPO4-alpha-Ca3(PO4)2 (DCP-alpha-TCP) system have been investigated with interest focused on the compressive strength and microstructure development [14].
  • Composites containing BSA developed compressive strengths twice that of the original cement at protein concentrations of 13-25% by weight [15].
  • A significant increase in compressive strength was, however, observed for H12 over time [16].
 

Analytical, diagnostic and therapeutic context of Compressive Strength

References

  1. Effect of 16 months of treatment with tibolone on bone mass, turnover, and biomechanical quality in mature ovariectomized rats. Ederveen, A.G., Spanjers, C.P., Quaijtaal, J.H., Kloosterboer, H.J. J. Bone Miner. Res. (2001) [Pubmed]
  2. The effect of systemically administered PDGF-BB on the rodent skeleton. Mitlak, B.H., Finkelman, R.D., Hill, E.L., Li, J., Martin, B., Smith, T., D'Andrea, M., Antoniades, H.N., Lynch, S.E. J. Bone Miner. Res. (1996) [Pubmed]
  3. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. Mazzaoui, S.A., Burrow, M.F., Tyas, M.J., Dashper, S.G., Eakins, D., Reynolds, E.C. J. Dent. Res. (2003) [Pubmed]
  4. Withdrawal of parathyroid hormone treatment causes rapid resorption of newly formed vertebral cancellous and endocortical bone in old rats. Ejersted, C., Oxlund, H., Eriksen, E.F., Andreassen, T.T. Bone (1998) [Pubmed]
  5. Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats. Lalla, S., Hothorn, L.A., Haag, N., Bader, R., Bauss, F. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. (1998) [Pubmed]
  6. Effects of altered crystalline structure and increased initial compressive strength of calcium sulfate bone graft substitute pellets on new bone formation. Urban, R.M., Turner, T.M., Hall, D.J., Infanger, S.I., Cheema, N., Lim, T.H., Moseley, J., Carroll, M., Roark, M. Orthopedics. (2004) [Pubmed]
  7. Effect of filler content and size on properties of composites. Li, Y., Swartz, M.L., Phillips, R.W., Moore, B.K., Roberts, T.A. J. Dent. Res. (1985) [Pubmed]
  8. Effects of phase transformations of silicas and calcium sulfates on the compressive strength of gypsum-bonded investments at high temperatures. Ohno, H., Nakano, S., Miyakawa, O., Watanabe, K., Shiokawa, N. J. Dent. Res. (1982) [Pubmed]
  9. Examination of the test for compressive strength applied to zinc oxide eugenol cements. Wilson, A.D. J. Dent. Res. (1976) [Pubmed]
  10. Bone mineral density and biomechanical properties of spine and femur of ovariectomized rats treated with naproxen. Jiang, Y., Zhao, J., Genant, H.K., Dequeker, J., Geusens, P. Bone (1998) [Pubmed]
  11. Polymer implant materials with improved X-ray opacity and biocompatibility. Chang, P. Biomaterials (1981) [Pubmed]
  12. Parathyroid hormone (1-34) increases vertebral bone mass, compressive strength, and quality in old rats. Ejersted, C., Andreassen, T.T., Hauge, E.M., Melsen, F., Oxlund, H. Bone (1995) [Pubmed]
  13. Preparation and compressive strength of alpha-tricalcium phosphate/gelatin gel composite cement. Fujishiro, Y., Takahashi, K., Sato, T. J. Biomed. Mater. Res. (2001) [Pubmed]
  14. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3(PO4)2 system: compressive strength and microstructural development. Fernández, E., Gil, F.J., Best, S.M., Ginebra, M.P., Driessens, F.C., Planell, J.A. J. Biomed. Mater. Res. (1998) [Pubmed]
  15. Polymer--calcium phosphate cement composites for bone substitutes. Mickiewicz, R.A., Mayes, A.M., Knaack, D. J. Biomed. Mater. Res. (2002) [Pubmed]
  16. Experimental studies on a new bioactive material: HAIonomer cements. Yap, A.U., Pek, Y.S., Kumar, R.A., Cheang, P., Khor, K.A. Biomaterials (2002) [Pubmed]
  17. Cadmium content of human cancellous bone. Knuuttila, M., Lappalainen, R., Olkkonen, H., Lammi, S., Alhava, E.M. Arch. Environ. Health (1982) [Pubmed]
  18. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement. Lin, L.C., Chang, S.J., Kuo, S.M., Chen, S.F., Kuo, C.H. Journal of materials science. Materials in medicine. (2005) [Pubmed]
 
WikiGenes - Universities