The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Likelihood Functions

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Likelihood Functions

 

High impact information on Likelihood Functions

  • For the case of equal theta values within populations and zero theta values between populations, the maximum likelihood estimate is the same as that given by Robertson & Hill in 1984 (70) [2].
  • We use the pattern of intron conservation in 684 groups of orthologs from seven fully sequenced eukaryotic genomes to provide maximum likelihood estimates of the number of introns present in the same orthologs in various eukaryotic ancestors [3].
  • Haplotype analyses supported the placement of LCA1 between loci D17S796 and D17S786 (maximum likelihood estimate for location of the disease gene over the D17S1353 locus) [4].
  • Using maximum likelihood estimates of nonsynonymous/synonymous rate ratios, we show that the majority of Est-6 sites evolves under strong (48% of sites) or moderate (50% of sites) negative selection and a minority of sites (1.5%) is under significant positive selection [5].
  • The maximum likelihood estimate of a hereditary Wilms tumor in our patients is zero and the corresponding 95% upper confidence limit ranges between 0.06 and 0.11, depending on penetrance [6].
 

Biological context of Likelihood Functions

 

Associations of Likelihood Functions with chemical compounds

 

Gene context of Likelihood Functions

  • Exploration of the maximum likelihood estimates of the various hypotheses concerning the mode of intergenerational transmission of PICP and BGP demonstrated a good correspondence to the Mendelian mode of inheritance (i.e., major gene effect) [14].
  • The maximum likelihood estimate of the recombination rate between the pHHH202 and NF1 loci was found to be O [15].
  • It is shown that the matrix of second-order derivatives of the log likelihood function in the case of ABO-like systems can be subjected to explicit inversion in the general case of k antigens [16].
  • The SAD function used in conjunction with the automated model-building procedures of ARP/wARP leads to a successful solution when current likelihood functions fail in a test case shown [17].
  • Previously, the direct use of prior phase information from a single-wavelength anomalous diffraction (SAD) experiment with a multivariate likelihood function applied to automated model building with iterative refinement has been proposed [Skubák et al. (2004), Acta Cryst. D60, 2196-2201] [18].

References

  1. The developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response modeling for estimation of benchmark doses. Rogers, J.M., Mole, M.L., Chernoff, N., Barbee, B.D., Turner, C.I., Logsdon, T.R., Kavlock, R.J. Teratology (1993) [Pubmed]
  2. Estimating F-statistics. Weir, B.S., Hill, W.G. Annu. Rev. Genet. (2002) [Pubmed]
  3. Complex early genes. Roy, S.W., Gilbert, W. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. A gene for Leber's congenital amaurosis maps to chromosome 17p. Camuzat, A., Dollfus, H., Rozet, J.M., Gerber, S., Bonneau, D., Bonnemaison, M., Briard, M.L., Dufier, J.L., Ghazi, I., Leowski, C. Hum. Mol. Genet. (1995) [Pubmed]
  5. Positive and Negative Selection in the beta-Esterase Gene Cluster of the Drosophila melanogaster Subgroup. Balakirev, E.S., Anisimova, M., Ayala, F.J. J. Mol. Evol. (2006) [Pubmed]
  6. Heritable fraction of unilateral Wilms tumor. Li, F.P., Williams, W.R., Gimbrere, K., Flamant, F., Green, D.M., Meadows, A.T. Pediatrics (1988) [Pubmed]
  7. DNA linkage analysis of X-linked retinoschisis. Dahl, N., Goonewardena, P., Chotai, J., Anvret, M., Pettersson, U. Hum. Genet. (1988) [Pubmed]
  8. Estimation in an island model using simulation. Nath, H.B., Griffiths, R.C. Theoretical population biology. (1996) [Pubmed]
  9. A general program for estimation of haplotype frequencies from population diploid data. Larsen, S.O. Computer programs in biomedicine. (1979) [Pubmed]
  10. Regressive logistic and proportional hazards disease models for within-family analyses of measured genotypes, with application to a CYP17 polymorphism and breast cancer. Cui, J.S., Spurdle, A.B., Southey, M.C., Dite, G.S., Venter, D.J., McCredie, M.R., Giles, G.G., Chenevix-Trench, G., Hopper, J.L. Genet. Epidemiol. (2003) [Pubmed]
  11. Do rats comply with EPA policy on cancer risk assessment for formaldehyde? Brown, L.P. Regulatory toxicology and pharmacology : RTP. (1989) [Pubmed]
  12. A proposed inhalation reference concentration for methanol. Starr, T.B., Festa, J.L. Regulatory toxicology and pharmacology : RTP. (2003) [Pubmed]
  13. Bayesian nonparametric population models: formulation and comparison with likelihood approaches. Wakefield, J., Walker, S. Journal of pharmacokinetics and biopharmaceutics. (1997) [Pubmed]
  14. Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Livshits, G., Yakovenko, C., Kobyliansky, E. Am. J. Med. Genet. (2000) [Pubmed]
  15. Tightly linked markers for the neurofibromatosis type 1 gene. White, R., Nakamura, Y., O'Connell, P., Leppert, M., Lalouel, J.M., Barker, D., Goldgar, D., Skolnick, M., Carey, J., Wallis, C.E. Genomics (1987) [Pubmed]
  16. Inverting the information matrix in gene-frequency estimation in systems like ABO. Larsen, S.O. Ann. Hum. Genet. (1977) [Pubmed]
  17. Direct incorporation of experimental phase information in model refinement. Skubák, P., Murshudov, G.N., Pannu, N.S. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  18. Extending the resolution and phase-quality limits in automated model building with iterative refinement. Skubák, P., Ness, S., Pannu, N.S. Acta Crystallogr. D Biol. Crystallogr. (2005) [Pubmed]
 
WikiGenes - Universities