The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

xn  -  exencephaly

Mus musculus

Synonyms: hn
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of xn


High impact information on xn


Chemical compound and disease context of xn

  • Splotch is an established model of folate-sensitive neural tube defects, and homozygous mutant embryos develop spina bifida and sometimes exencephaly [10].
  • In all cases, the rates of exencephaly, embryolethality, and fetal weight retardation induced by the methyl-branched derivatives were very low when compared to those of the parent compounds [11].
  • Also, the type of these malformations was different from those (exencephaly, cleft palate and macroglossia) induced by a known teratogenic dose of vitamin A (1,200,000 IU) [12].
  • Teratogenicity studies performed in a SWV/Fnn-mouse model for VPA-induced-exencephaly showed that on the equimolar basis OM-TMCD possesses the same fetal toxicity and ability to induce NTDs as VPA, but since OM-TMCD is a much more potent anticonvulsant its activity/exencephaly formation ratio appears to be much more beneficial than that of VPA [13].
  • The higher dose of methionine did not produce a particularly beneficial effect on embryonic survival, fetal body weight and occurrence of exencephaly [14].

Biological context of xn


Anatomical context of xn

  • Tcof1 heterozygous mice die perinatally as a result of severe craniofacial anomalies that include agenesis of the nasal passages, abnormal development of the maxilla, exencephaly and anophthalmia [20].
  • Matings involving the Sp allele yielded litters with significantly higher percentages of maternal diabetes-induced spina bifida aperta but not exencephaly, and this increase was shown to be associated with the presence of a single copy of the Sp allele in affected fetuses [21].
  • The exencephaly is due to a primary failure of neurulation, resulting from a lack of mid/hindbrain dorsolateral hinge point (DLHP) formation [22].
  • Targeted mutation of the mouse laminin alpha 5 gene Lama5 causes embryonic lethality at E14-E17 associated with exencephaly, syndactyly, placentopathy, and kidney defects, all attributable to abnormal basement membranes [23].
  • Lymphocytes from adult mice bearing a known difference in genetic susceptibility to teratogen-induced exencephaly (SWV/SD, and DBA/2J) were evaluated for changes in protein synthesis following an in vivo heat treatment [24].

Associations of xn with chemical compounds

  • FA supplementation reduced the recurrence risk of Cd exencephaly by as much as 55% [25].
  • Propyl-4-yn-valproic acid (2-propyl-4-pentynoic acid), an analogue of valproic acid with a triple bond in one alkyl side chain, potently induces exencephaly in mice [26].
  • The low dose of methionine only numerically reduced the spontaneous exencephaly [14].
  • Effect of L-threonine on trypan blue-induced exencephaly [27].
  • Although these anomalies were similar to the minor defects seen in the fetuses of morphine sulfate-treated mice, the major anomalies such as exencephaly, cryptorchid testes, and rib and vertebral fusions produced by morphine were not present in the fetuses of mice challenged with codeine [28].

Regulatory relationships of xn

  • RESULTS: Folbp2(-/-) mice had higher VPA-induced frequencies of embryonic lethality and exencephaly than did the wild-type control mice during folate supplementation and a control diet, respectively [29].

Other interactions of xn


Analytical, diagnostic and therapeutic context of xn


  1. Loss of the SKI proto-oncogene in individuals affected with 1p36 deletion syndrome is predicted by strain-dependent defects in Ski-/- mice. Colmenares, C., Heilstedt, H.A., Shaffer, L.G., Schwartz, S., Berk, M., Murray, J.C., Stavnezer, E. Nat. Genet. (2002) [Pubmed]
  2. Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. Wang, Y., Vachon, E., Zhang, J., Cherepanov, V., Kruger, J., Li, J., Saito, K., Shannon, P., Bottini, N., Huynh, H., Ni, H., Yang, H., McKerlie, C., Quaggin, S., Zhao, Z.J., Marsden, P.A., Mustelin, T., Siminovitch, K.A., Downey, G.P. J. Exp. Med. (2005) [Pubmed]
  3. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. Miner, J.H., Cunningham, J., Sanes, J.R. J. Cell Biol. (1998) [Pubmed]
  4. Neural tube defects and abnormal brain development in F52-deficient mice. Wu, M., Chen, D.F., Sasaoka, T., Tonegawa, S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  5. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Carter, M.G., Johns, M.A., Zeng, X., Zhou, L., Zink, M.C., Mankowski, J.L., Donovan, D.M., Baylin, S.B. Hum. Mol. Genet. (2000) [Pubmed]
  6. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Bamforth, S.D., Bragança, J., Eloranta, J.J., Murdoch, J.N., Marques, F.I., Kranc, K.R., Farza, H., Henderson, D.J., Hurst, H.C., Bhattacharya, S. Nat. Genet. (2001) [Pubmed]
  7. Genomic instability in Gadd45a-deficient mice. Hollander, M.C., Sheikh, M.S., Bulavin, D.V., Lundgren, K., Augeri-Henmueller, L., Shehee, R., Molinaro, T.A., Kim, K.E., Tolosa, E., Ashwell, J.D., Rosenberg, M.P., Zhan, Q., Fernández-Salguero, P.M., Morgan, W.F., Deng, C.X., Fornace, A.J. Nat. Genet. (1999) [Pubmed]
  8. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Berk, M., Desai, S.Y., Heyman, H.C., Colmenares, C. Genes Dev. (1997) [Pubmed]
  9. A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Epstein, D.J., Vogan, K.J., Trasler, D.G., Gros, P. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Lakkis, M.M., Golden, J.A., O'Shea, K.S., Epstein, J.A. Dev. Biol. (1999) [Pubmed]
  11. Further branching of valproate-related carboxylic acids reduces the teratogenic activity, but not the anticonvulsant effect. Bojic, U., Elmazar, M.M., Hauck, R.S., Nau, H. Chem. Res. Toxicol. (1996) [Pubmed]
  12. Biotin deficiency per se is teratogenic in mice. Watanabe, T., Endo, A. J. Nutr. (1991) [Pubmed]
  13. Anticonvulsant activity, neural tube defect induction, mutagenicity and pharmacokinetics of a new potent antiepileptic drug, N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide. Sobol, E., Yagen, B., Lamb, J.G., White, H.S., Wlodarczyk, B.J., Finnell, R.H., Bialer, M. Epilepsy Res. (2007) [Pubmed]
  14. Effect of maternal methionine pre-treatment on alcohol-induced exencephaly and axial skeletal dysmorphogenesis in mouse fetuses. Padmanabhan, R., Ibrahim, A., Bener, A. Drug and alcohol dependence. (2002) [Pubmed]
  15. Inheritance and morphology of exencephaly, a neonatal lethal recessive with partial penetrance, in the house mouse. Wallace, M.E., Knights, P.J., Anderson, J.R. Genet. Res. (1978) [Pubmed]
  16. Folic acid prevents exencephaly in Cited2 deficient mice. Barbera, J.P., Rodriguez, T.A., Greene, N.D., Weninger, W.J., Simeone, A., Copp, A.J., Beddington, R.S., Dunwoodie, S. Hum. Mol. Genet. (2002) [Pubmed]
  17. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Nonn, L., Williams, R.R., Erickson, R.P., Powis, G. Mol. Cell. Biol. (2003) [Pubmed]
  18. The LIM domain-only protein LMO4 is required for neural tube closure. Lee, S.K., Jurata, L.W., Nowak, R., Lettieri, K., Kenny, D.A., Pfaff, S.L., Gill, G.N. Mol. Cell. Neurosci. (2005) [Pubmed]
  19. A haplolethal locus uncovered by deletions in the mouse T complex. Browning, V.L., Bergstrom, R.A., Daigle, S., Schimenti, J.C. Genetics (2002) [Pubmed]
  20. Increased levels of apoptosis in the prefusion neural folds underlie the craniofacial disorder, Treacher Collins syndrome. Dixon, J., Brakebusch, C., Fässler, R., Dixon, M.J. Hum. Mol. Genet. (2000) [Pubmed]
  21. Diabetic embryopathy in C57BL/6J mice. Altered fetal sex ratio and impact of the splotch allele. Machado, A.F., Zimmerman, E.F., Hovland, D.N., Weiss, R., Collins, M.D. Diabetes (2001) [Pubmed]
  22. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Stottmann, R.W., Berrong, M., Matta, K., Choi, M., Klingensmith, J. Dev. Biol. (2006) [Pubmed]
  23. Laminin alpha 5 is required for lobar septation and visceral pleural basement membrane formation in the developing mouse lung. Nguyen, N.M., Miner, J.H., Pierce, R.A., Senior, R.M. Dev. Biol. (2002) [Pubmed]
  24. Genetic differences in the duration of the lymphocyte heat shock response in mice. Mohl, V.K., Bennett, G.D., Finnell, R.H. Genetics (1990) [Pubmed]
  25. Crooked tail (Cd) models human folate-responsive neural tube defects. Carter, M., Ulrich, S., Oofuji, Y., Williams, D.A., Ross, M.E. Hum. Mol. Genet. (1999) [Pubmed]
  26. Studies on the teratogen pharmacophore of valproic acid analogues: evidence of interactions at a hydrophobic centre. Bojic, U., Ehlers, K., Ellerbeck, U., Bacon, C.L., O'Driscoll, E., O'Connell, C., Berezin, V., Kawa, A., Lepekhin, E., Bock, E., Regan, C.M., Nau, H. Eur. J. Pharmacol. (1998) [Pubmed]
  27. Effect of L-threonine on trypan blue-induced exencephaly. Zawoiski, E.J. Toxicol. Appl. Pharmacol. (1980) [Pubmed]
  28. Evaluation of teratogenic potential codeine sulfate in CF-1 mice. Zellers, J.E., Gautieri, R.F. Journal of pharmaceutical sciences. (1977) [Pubmed]
  29. Valproate-induced neural tube defects in folate-binding protein-2 (Folbp2) knockout mice. Spiegelstein, O., Merriweather, M.Y., Wicker, N.J., Finnell, R.H. Birth defects research. Part A, Clinical and molecular teratology. (2003) [Pubmed]
  30. Sodium valproate augments spontaneous neural tube defects and axial skeletal malformations in TO mouse fetuses [corrected]. Padmanabhan, R., Ahmed, I. Reprod. Toxicol. (1996) [Pubmed]
  31. Early morphological abnormalities in splotch mouse embryos and predisposition to gene- and retinoic acid-induced neural tube defects. Dempsey, E.E., Trasler, D.G. Teratology (1983) [Pubmed]
  32. Evaluation of exposure to water aerosol or air by nose-only or whole-body inhalation procedures for CD-1 mice in developmental toxicity studies. Tyl, R.W., Ballantyne, B., Fisher, L.C., Fait, D.L., Savine, T.A., Pritts, I.M., Dodd, D.E. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1994) [Pubmed]
  33. Maternal treatment with teratogen causes congenital malformations in mouse embryos. Matta, C.A. Folia morphologica. (1990) [Pubmed]
  34. Amniotic fluid cholinesterase of valproate-induced exencephaly in the mouse: an animal model for prenatal diagnosis of neural tube defects. Elmazar, M.M., Vogel, R., Spielmann, H. Arch. Toxicol. (1988) [Pubmed]
  35. Effect of supplemental folic acid on valproic acid-induced embryotoxicity and tissue zinc levels in vivo. Hansen, D.K., Grafton, T.F., Dial, S.L., Gehring, T.A., Siitonen, P.H. Teratology (1995) [Pubmed]
  36. Genetic analysis of the cause of exencephaly in the SELH/Bc mouse stock. Juriloff, D.M., Macdonald, K.B., Harris, M.J. Teratology (1989) [Pubmed]
  37. Nonspecific stimulation of the maternal immune system. I. Effects On teratogen-induced fetal malformations. Holladay, S.D., Sharova, L., Smith, B.J., Gogal, R.M., Ward, D.L., Blaylock, B.L. Teratology (2000) [Pubmed]
WikiGenes - Universities