The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Choroideremia


High impact information on Choroideremia

  • Mutations in members of this family, such as REP-1, lead to abnormalities, including progressive retinal degradation (choroideremia) in humans [6].
  • Using semisynthetic fluorescent Rab27A, we demonstrate that although Rab27A can be prenylated by REP-2, this reaction can be effectively inhibited by other Rab proteins, providing a possible explanation for the accumulation of unprenylated Rab27A in choroideremia [6].
  • Human choroideremia protein contains a FAD-binding domain [7].
  • In contrast to what has been observed before for the loss of function of the choroideremia gene, the depletion of Mrs6p from yeast cells blocks vesicular transport [8].
  • Two patients with deletions and choroideremia are affected by an X-linked mixed conductive/sensorineural deafness; one patient, XL-62, was confirmed at surgery to have DFN3, while the other patient, XL-45, is suspected clinically to have the same disorder [9].

Chemical compound and disease context of Choroideremia


Biological context of Choroideremia


Anatomical context of Choroideremia


Gene context of Choroideremia


Analytical, diagnostic and therapeutic context of Choroideremia


  1. Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. Larijani, B., Hume, A.N., Tarafder, A.K., Seabra, M.C. J. Biol. Chem. (2003) [Pubmed]
  2. Crystallization and preliminary X-ray diffraction analysis of monoprenylated Rab7 GTPase in complex with Rab escort protein 1. Rak, A., Pylypenko, O., Niculae, A., Goody, R.S., Alexandrov, K. J. Struct. Biol. (2003) [Pubmed]
  3. Tapeto-retinal degeneration in four Norwegian counties, I. Diagnostic evaluation of 89 probands. Grøndahl, J. Clin. Genet. (1986) [Pubmed]
  4. Wagner vitreoretinal degeneration with genetic linkage refinement on chromosome 5q13-q14. Zech, J.C., Morlé, L., Vincent, P., Alloisio, N., Bozon, M., Gonnet, C., Milazzo, S., Grange, J.D., Trepsat, C., Godet, J., Plauchu, H. Graefes Arch. Clin. Exp. Ophthalmol. (1999) [Pubmed]
  5. Molecular genetics of inherited eye disorders. MacDonald, I.M., Sasi, R. Clinical and investigative medicine. Médecine clinique et experimentale. (1994) [Pubmed]
  6. Structure of the Rab7:REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Rak, A., Pylypenko, O., Niculae, A., Pyatkov, K., Goody, R.S., Alexandrov, K. Cell (2004) [Pubmed]
  7. Human choroideremia protein contains a FAD-binding domain. Koonin, E.V. Nat. Genet. (1996) [Pubmed]
  8. Identification of yeast component A: reconstitution of the geranylgeranyltransferase that modifies Ypt1p and Sec4p. Jiang, Y., Ferro-Novick, S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Choroideremia and deafness with stapes fixation: a contiguous gene deletion syndrome in Xq21. Merry, D.E., Lesko, J.G., Sosnoski, D.M., Lewis, R.A., Lubinsky, M., Trask, B., van den Engh, G., Collins, F.S., Nussbaum, R.L. Am. J. Hum. Genet. (1989) [Pubmed]
  10. Macular pigment and lutein supplementation in choroideremia. Duncan, J.L., Aleman, T.S., Gardner, L.M., De Castro, E., Marks, D.A., Emmons, J.M., Bieber, M.L., Steinberg, J.D., Bennett, J., Stone, E.M., MacDonald, I.M., Cideciyan, A.V., Maguire, M.G., Jacobson, S.G. Exp. Eye Res. (2002) [Pubmed]
  11. Fluorescein angiography in potential carriers for choroideremia. An additional aid for final diagnosis, when funduscopy shows equivocal symptoms. van Dorp, D.B., van Balen, A.T. Ophthalmic paediatrics and genetics. (1985) [Pubmed]
  12. Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline. van den Hurk, J.A., Hendriks, W., van de Pol, D.J., Oerlemans, F., Jaissle, G., Rüther, K., Kohler, K., Hartmann, J., Zrenner, E., van Bokhoven, H., Wieringa, B., Ropers, H.H., Cremers, F.P. Hum. Mol. Genet. (1997) [Pubmed]
  13. Deficient geranylgeranylation of Ram/Rab27 in choroideremia. Seabra, M.C., Ho, Y.K., Anant, J.S. J. Biol. Chem. (1995) [Pubmed]
  14. Linkage studies and deletion screening in choroideremia. Wright, A.F., Nussbaum, R.L., Bhattacharya, S.S., Jay, M., Lesko, J.G., Evans, H.J., Jay, B. J. Med. Genet. (1990) [Pubmed]
  15. Novel types of mutation in the choroideremia ( CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. van den Hurk, J.A., van de Pol, D.J., Wissinger, B., van Driel, M.A., Hoefsloot, L.H., de Wijs, I.J., van den Born, L.I., Heckenlively, J.R., Brunner, H.G., Zrenner, E., Ropers, H.H., Cremers, F.P. Hum. Genet. (2003) [Pubmed]
  16. A curriculum for training patients with peripheral visual field loss to use bioptic amorphic lenses. Laderman, D.J., Szlyk, J.P., Kelsch, R., Seiple, W. Journal of rehabilitation research and development. (2000) [Pubmed]
  17. Abnormal axonemes in X-linked retinitis pigmentosa. Hunter, D.G., Fishman, G.A., Kretzer, F.L. Arch. Ophthalmol. (1988) [Pubmed]
  18. REP-2, a Rab escort protein encoded by the choroideremia-like gene. Cremers, F.P., Armstrong, S.A., Seabra, M.C., Brown, M.S., Goldstein, J.L. J. Biol. Chem. (1994) [Pubmed]
  19. Cloning, mapping and characterization of the human RAB27A gene. Tolmachova, T., Ramalho, J.S., Anant, J.S., Schultz, R.A., Huxley, C.M., Seabra, M.C. Gene (1999) [Pubmed]
  20. Choroideremia, sensorineural deafness, and primary ovarian failure in a woman with a balanced X-4 translocation. Lorda-Sanchez, I.J., Ibañez, A.J., Sanz, R.J., Trujillo, M.J., Anabitarte, M.E., Querejeta, M.E., Rodriguez de Alba, M., Gimenez, A., Infantes, F., Ramos, C., Garcia-Sandoval, B., Ayuso, C. Ophthalmic Genet. (2000) [Pubmed]
  21. Multipoint linkage analysis of loci in the proximal long arm of the human X chromosome: application to mapping the choroideremia locus. Lesko, J.G., Lewis, R.A., Nussbaum, R.L. Am. J. Hum. Genet. (1987) [Pubmed]
  22. Regional localization of polymorphic DNA loci on the proximal long arm of the X chromosome using deletions associated with choroideremia. Schwartz, M., Yang, H.M., Niebuhr, E., Rosenberg, T., Page, D.C. Hum. Genet. (1988) [Pubmed]
  23. Attitudes towards prenatal diagnosis and selective abortion among patients with retinitis pigmentosa or choroideremia as well as among their relatives. Furu, T., Kääriäinen, H., Sankila, E.M., Norio, R. Clin. Genet. (1993) [Pubmed]
  24. Vitreous fluorophotometry in carriers of choroideremia and X-linked retinitis pigmentosa. Rusin, M.M., Fishman, G.A., Larson, J.A., Gilbert, L.D. Arch. Ophthalmol. (1989) [Pubmed]
  25. Progression of defects in the central 10-degree visual field of patients with retinitis pigmentosa and choroideremia. Hirakawa, H., Iijima, H., Gohdo, T., Imai, M., Tsukahara, S. Am. J. Ophthalmol. (1999) [Pubmed]
WikiGenes - Universities