The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of a new caspase homologue: caspase-14.

Caspases are cysteinyl aspartate-specific proteinases, many of which play a central role in apoptosis. Here, we report the identification of a new murine caspase homologue, viz. caspase-14. It is most related to human/murine caspase-2 and human caspase-9, possesses all the typical amino acid residues of the caspases involved in catalysis, including the QACRG box, and contains no or only a very short prodomain. Murine caspase-14 shows 83% similarity to human caspase-14. Human caspase-14 is assigned to chromosome 19p13. 1. Northern blot analysis revealed that mRNA expression of caspase-14 is undetectable in all mouse adult tissues examined except for skin, while it is abundantly expressed in mouse embryos. In contrast to many other caspase family members, murine caspase-14 is not cleaved by granzyme B, caspase-1, caspase-2, caspase-3, caspase-6, caspase-7 or caspase-11, but is weakly processed into p18 and p11 subunits by murine caspase-8. No aspartase activity of murine caspase-14 could be generated by bacterial or yeast expression. Transient overexpression of murine caspase-14 in mammalian cells did not elicit cell death and did not interfere with caspase-8-induced apoptosis. In conclusion, caspase-14 is a member of the caspase family but no proteolytic or biological activities have been identified so far. The high constitutive expression levels in embryos and specific expression in adult skin suggest a role in ontogenesis and skin physiology.[1]

References

  1. Identification of a new caspase homologue: caspase-14. Van de Craen, M., Van Loo, G., Pype, S., Van Criekinge, W., Van den brande, I., Molemans, F., Fiers, W., Declercq, W., Vandenabeele, P. Cell Death Differ. (1998) [Pubmed]
 
WikiGenes - Universities