The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Casp7  -  caspase 7

Mus musculus

Synonyms: AI314680, Apoptotic protease Mch-3, CASP-7, CMH-1, Caspase-7, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Casp7

 

High impact information on Casp7

  • Moreover, we demonstrate that the mammalian IAP c-IAP1 interacts with caspase-7 in an exclusively IBM-dependent, but active site pocket-independent, manner that is mechanistically similar to DIAP1 [4].
  • Here we report that caspase-7 activation induced by BCR crosslinking is independent of caspase-8 and cytochrome c translocation from mitochondria to the cytosol, as well as of mitochondrial depolarization [2].
  • We demonstrate that calpain specifically triggers activation and processing of caspase-7 both in vitro and in vivo, and that both processes are inhibited by calpain inhibitors [2].
  • Treatment with Let, Tam, or E2W resulted in a dose- and time-dependent increase in active caspase-7 and up-regulation of p53 and p21 protein [5].
  • No apoptosis was observed in the cells where caspase-7 did not undergo autocatalytic activation [6].
 

Biological context of Casp7

  • Neither of the inhibitors prevented Mch3 processing; however, z-VAD-fmk prevented proteolysis of the p32 subunit, suggesting that further processing of this subunit is associated with apoptosis [7].
  • On the basis of sequence homology, the caspases can be divided into three subfamilies: first, mCASP-1, mCASP-11 and mCASP-12; second, mCASP-2; third, mCASP-3, mCASP-6 and mCASP-7 [8].
  • Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death [9].
  • Together, our findings demonstrate for the first time a strong correlation between caspase-7 activity, normal brain development, and apoptotic DNA fragmentation in Casp3-/- mice [10].
  • Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice [10].
 

Anatomical context of Casp7

 

Associations of Casp7 with chemical compounds

  • Mouse Casp7 encodes a putative 340-amino-acid polypeptide that contains all the known conserved residues required for protease function, including the QACRG sequence, aspartic acid residues for internal cleavage sites, and the residues required for substrate binding [14].
  • Here, we describe the cloning of mouse and human Casp7, another member of this family of cysteine proteases [14].
  • Liver damage, induction of apoptosis, activation and translocation of caspase-7, and proteolysis of sterol regulatory element-binding protein 1 are all blocked by the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD. fmk) [11].
  • Two CPP32-like proteases, CPP32 and Mch-3, are expressed in untreated and retinoic acid-treated P19 EC cells [15].
  • Furthermore, addition of spermine could repress the BCR-mediated apoptosis by attenuating the mitochondrial membrane potential (Deltapsim) loss and activation of caspase-7 induced by BCR signaling [16].
 

Enzymatic interactions of Casp7

 

Regulatory relationships of Casp7

 

Other interactions of Casp7

  • Bcl-2 overexpression prevented anti- micro induction of CPP32-like activity and apoptosis, and blocked further processing of the Mch3 p32 subunit [7].
  • Histopathological changes in lungs of mice administered benzo(a)pyrene (BP) were followed serially and correlated with the expression of Cox-2, caspase-3 and caspase-7, which play key roles in histopathogenesis of neoplasia [19].
  • We have found increased levels of apoptosis as well as increased caspase-3 and caspase-7 gene expression in the intestines of GC-C-deficient Apc(Min/+) mice compared with Apc(Min/+) mice [20].
  • We did not detect the presence of caspase-7 in the ER fraction at the period of caspase-12 cleavage [21].
  • Elk-3 and Caspase-7 were not expressed in vitro in cultured cell lines, suggesting that their expression was induced by the tumor microenvironment [22].
 

Analytical, diagnostic and therapeutic context of Casp7

References

  1. Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Le, D.A., Wu, Y., Huang, Z., Matsushita, K., Plesnila, N., Augustinack, J.C., Hyman, B.T., Yuan, J., Kuida, K., Flavell, R.A., Moskowitz, M.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Implication of calpain in caspase activation during B cell clonal deletion. Ruiz-Vela, A., González de Buitrago, G., Martínez-A, C. EMBO J. (1999) [Pubmed]
  3. Apoptotic versus autophagic cell death in heart failure. Knaapen, M.W., Davies, M.J., De Bie, M., Haven, A.J., Martinet, W., Kockx, M.M. Cardiovasc. Res. (2001) [Pubmed]
  4. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Tenev, T., Zachariou, A., Wilson, R., Ditzel, M., Meier, P. Nat. Cell Biol. (2005) [Pubmed]
  5. Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Thiantanawat, A., Long, B.J., Brodie, A.M. Cancer Res. (2003) [Pubmed]
  6. Adenovirus-mediated Bax overexpression for the induction of therapeutic apoptosis in prostate cancer. Li, X., Marani, M., Yu, J., Nan, B., Roth, J.A., Kagawa, S., Fang, B., Denner, L., Marcelli, M. Cancer Res. (2001) [Pubmed]
  7. Caspase activation by BCR cross-linking in immature B cells: differential effects on growth arrest and apoptosis. Brás, A., Ruiz-Vela, A., González de Buitrago, G., Martinez-A, C. FASEB J. (1999) [Pubmed]
  8. Characterization of seven murine caspase family members. Van de Craen, M., Vandenabeele, P., Declercq, W., Van den Brande, I., Van Loo, G., Molemans, F., Schotte, P., Van Criekinge, W., Beyaert, R., Fiers, W. FEBS Lett. (1997) [Pubmed]
  9. Teratogen-induced activation of caspase-6 and caspase-7 in early postimplantation mouse embryos. Little, S.A., Kim, W.K., Mirkes, P.E. Cell Biol. Toxicol. (2003) [Pubmed]
  10. Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. Houde, C., Banks, K.G., Coulombe, N., Rasper, D., Grimm, E., Roy, S., Simpson, E.M., Nicholson, D.W. J. Neurosci. (2004) [Pubmed]
  11. Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. Chandler, J.M., Cohen, G.M., MacFarlane, M. J. Biol. Chem. (1998) [Pubmed]
  12. Cloning and characterization of a novel RING-B-box-coiled-coil protein with apoptotic function. Kimura, F., Suzu, S., Nakamura, Y., Nakata, Y., Yamada, M., Kuwada, N., Matsumura, T., Yamashita, T., Ikeda, T., Sato, K., Motoyoshi, K. J. Biol. Chem. (2003) [Pubmed]
  13. Caspase-7 gene disruption reveals an involvement of the enzyme during the early stages of apoptosis. Korfali, N., Ruchaud, S., Loegering, D., Bernard, D., Dingwall, C., Kaufmann, S.H., Earnshaw, W.C. J. Biol. Chem. (2004) [Pubmed]
  14. Identification and mapping of Casp7, a cysteine protease resembling CPP32 beta, interleukin-1 beta converting enzyme, and CED-3. Juan, T.S., McNiece, I.K., Argento, J.M., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., Fletcher, F.A. Genomics (1997) [Pubmed]
  15. Wortmannin enhances CPP32-like activity during neuronal differentiation of P19 embryonal carcinoma cells induced by retinoic acid. Mukasa, T., Khoroku, Y., Tsukahara, T., Momoi, M.Y., Kimura, I., Momoi, T. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  16. Involvement of polyamines in B cell receptor-mediated apoptosis: spermine functions as a negative modulator. Nitta, T., Igarashi, K., Yamashita, A., Yamamoto, M., Yamamoto, N. Exp. Cell Res. (2001) [Pubmed]
  17. Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent Peptide for imaging apoptosis. Bullok, K.E., Maxwell, D., Kesarwala, A.H., Gammon, S., Prior, J.L., Snow, M., Stanley, S., Piwnica-Worms, D. Biochemistry (2007) [Pubmed]
  18. Cleavage of calnexin caused by apoptotic stimuli: implication for the regulation of apoptosis. Takizawa, T., Tatematsu, C., Watanabe, K., Kato, K., Nakanishi, Y. J. Biochem. (2004) [Pubmed]
  19. Black Tea Polyphenols Restrict Benzopyrene-induced Mouse Lung Cancer Progression through Inhibition of Cox-2 and Induction of Caspase-3 Expression. Banerjee, S., Manna, S., Mukherjee, S., Pal, D., Panda, C.K., Das, S. Asian Pac. J. Cancer Prev. (2006) [Pubmed]
  20. Lack of guanylyl cyclase C, the receptor for Escherichia coli heat-stable enterotoxin, results in reduced polyp formation and increased apoptosis in the multiple intestinal neoplasia (Min) mouse model. Mann, E.A., Steinbrecher, K.A., Stroup, C., Witte, D.P., Cohen, M.B., Giannella, R.A. Int. J. Cancer (2005) [Pubmed]
  21. Activation of caspase-12 by endoplasmic reticulum stress induced by transient middle cerebral artery occlusion in mice. Shibata, M., Hattori, H., Sasaki, T., Gotoh, J., Hamada, J., Fukuuchi, Y. Neuroscience (2003) [Pubmed]
  22. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Erin, N., Zhao, W., Bylander, J., Chase, G., Clawson, G. Breast Cancer Res. Treat. (2006) [Pubmed]
  23. Inhibition of nuclear transport of caspase-7 by its prodomain. Yaoita, Y. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  24. Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation. de Vries, B., Matthijsen, R.A., van Bijnen, A.A., Wolfs, T.G., Buurman, W.A. Am. J. Pathol. (2003) [Pubmed]
  25. Expression and in vitro cleavage activity of anti-caspase-7 hammerhead ribozymes. Zhang, W., Xie, Q., Zhou, X.Q., Jiang, S., Jin, Y.X. World J. Gastroenterol. (2004) [Pubmed]
 
WikiGenes - Universities