The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Analysis of hyposmolarity-induced taurine efflux pathways in the bullfrog sympathetic ganglia.

Hyposmolarity-induced taurine release was dependent on the decrease in medium osmolarity (5-50%) in the satellite glial cells of the bullfrog sympathetic ganglia. Release of GABA induced by hyposmolarity was much less than that of taurine. Omission of external Cl- replaced with gluconate totally suppressed taurine release, but only slightly suppressed GABA release. Bumetanide and furosemide, blockers of the Na+/K+/2Cl- cotransport system, inhibited taurine release by about 40%. Removal of external Na+ by replacement with choline, or omission of K+, suppressed taurine release by 40%. Antagonists of the Cl-/HCO3 exchange system, SITS, DIDS and niflumic acid, significantly reduced taurine release. The carbonic anhydrase inhibitor, acetazolamide, reduced the taurine release by 34%. Omission of external HCO3 by replacement with HEPES caused a 40% increase in the hyposmolarity-induced taurine release. Hyposmolarity-induced GABA release was not affected by bumetanide or SITS. Chloride channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and N-phenylanthranilic acid (DPC), practically abolished taurine release. Blockers of K+ channels, clofilium and quinidine, had no effect on the taurine release. The hyposmolarity-induced taurine release was considerably enhanced by a simultaneous increase in external K+. GABA was not mediated by the same transport pathway as that of taurine. These results indicate that Cl- channels may be responsible for the hyposmolarity-induced taurine release, and that Na+/K+/2Cl- cotransporter and Cl-/HCO3 exchanger may contribute to maintain the intracellular Cl- levels higher than those predicted for a passive thermodynamic distribution in the hyposmolarity-induced taurine release.[1]

References

 
WikiGenes - Universities