The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes.

Syntrophic cocultures of Geobacter sulfurreducens and Wolinella succinogenes oxidize acetate with nitrate as terminal electron acceptor. It has been postulated earlier that electrons are transferred in these cocultures not via hydrogen, but via a different carrier, e.g., a small c-type cytochrome that is detected in the supernatant of growing cultures. In the present study, L -cysteine, which was provided as a reducing agent, was found to mediate the electron transfer between the two partners. Low concentrations of L -cysteine or L -cystine (10-100 microM) supported syntrophic growth, and no acetate oxidation was observed in the absence of cysteine or cystine. Cell suspensions of G. sulfurreducens or coculture cell suspensions reduced cystine to cysteine, and suspensions of W. succinogenes or coculture suspensions oxidized cysteine with nitrate, as measured by the formation or depletion of free thiol groups. Added cysteine was rapidly oxidized by the coculture during growth, but the formed cystine was not entirely rereduced even under acceptor-limited conditions. The redox potential prevailing in acetate-oxidizing cocultures was -160 to -230 mV. Sulfide at low concentrations supported syntrophic growth as well and could replace cysteine. Neither growth nor acetate degradation was found with D-cysteine, homocysteine, cysteamine, 3-mercaptopropionate, dithiothreithol, thioglycolate, glutathione, coenzyme M, dimethylsulfoxide, trimethylamine- N-oxide, anthraquinone-2,6-disulfonate, or ascorbate.[1]

References

 
WikiGenes - Universities