The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

DEGA/AMIGO-2, a leucine-rich repeat family member, differentially expressed in human gastric adenocarcinoma: effects on ploidy, chromosomal stability, cell adhesion/migration and tumorigenicity.

We have discovered DEGA, a novel cDNA differentially expressed in human gastric adenocarcinomas. The DEGA gene product contains a signal peptide, five leucine-rich repeat motifs and a single IgG, and transmembrane domain, suggesting its residence on the plasma membrane. Transfection of 293 cells with a DEGA-GFP fusion construct confirmed its cell surface localization. Although the cytosolic portion of the DEGA gene product does not contain known protein domains, approximately one-fifth of these residues are either a serine or a threonine, suggesting that DEGA may play a role in signal transduction. BLAST searches revealed DEGA to be an exact match to AMIGO-2, a recently identified, but functionally uncharacterized protein related to AMIGO, a leucine-rich repeat containing cell adhesion molecule implicated in axon tract development. In this report, we show that DEGA/AMIGO-2 mRNA is differentially expressed in approximately 45% of tumor versus normal tissue from gastric adenocarcinoma patients. Stable expression of a DEGA/AMIGO-2 antisense construct in the gastric adenocarcinoma cell line, AGS, led to altered morphology, increased ploidy, chromosomal instability, decreased cell adhesion/migration, and a nearly complete abrogation of tumorigenicity in nude mice. These findings suggest a potential etiologic role for DEGA/AMIGO-2 in gastric adenocarcinoma.[1]


WikiGenes - Universities