The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses.

Glial cells and extracellular matrix ( ECM) molecules surround developing fiber tracts and are implicated in axonal pathfinding. These and other molecules are produced by these strategically located glial cells and have been shown to influence axonal growth across the midline in rodents. We searched for similar cellular and molecular structures surrounding the telencephalic commissures of fetal human brains. Paraffin-embedded brain sections were immunostained for glial fibrillary acidic protein (GFAP) and vimentin (VN) to identify glial cells; for microtubule-associated protein-2 (MAP-2) and neuronal nuclear protein (NeuN) to document neurons; for neurofilament (NF) to identify axons; and for chondroitin sulfate (CS), tenascin (TN), and fibronectin (FN) to show the ECM. As in rodents, three cellular clusters surrounding the corpus callosum were identified by their expression of GFAP and VN (but not MAP-2 or NeuN) from 13 to at least 18 weeks postovulation (wpo): the glial wedge, the glia of the indusium griseum, and the midline sling. CS and TN (but not FN) were expressed pericellularly in these cell groups. The anterior commissure was surrounded by a GFAP+/VN+ glial tunnel from 12 wpo, with TN expression seen between the GFAP+ cell bodies. The fimbria showed GFAP+/VN+ cells at its lateral and medial borders from 12 wpo, with pericellular expression of CS. The fornix showed GFAP+ cells somewhat later (16 wpo). Because these structures are similar to those described for rodents, we concluded that the axon guiding mechanisms postulated for commissural formation in nonhuman mammals may also be operant in the developing human brain.[1]

References

  1. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. Lent, R., Uziel, D., Baudrimont, M., Fallet, C. J. Comp. Neurol. (2005) [Pubmed]
 
WikiGenes - Universities