The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MAP2  -  microtubule-associated protein 2

Homo sapiens

Synonyms: MAP-2, MAP2A, MAP2B, MAP2C, Microtubule-associated protein 2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MAP2


Psychiatry related information on MAP2


High impact information on MAP2


Chemical compound and disease context of MAP2

  • In immunohistochemical staining for MAP2, the ischemic lesion in the medial CA1 maintained after 5 min ischemia and the subsequent early reperfusion period in the untreated brains was protected by the preischemic injection of 10 mg kg-1 MK-801, but was not restored by the injection of 0.5 mg kg-1 Nimodipine or 1 mg kg-1 Nicardipine [12].
  • However, in the B104 rat neuroblastoma cell line the MAP2 antigen appeared to be associated with the cytoskeleton concomitant with differentiation induced by dibutyryl cyclic AMP [13].
  • By densitometric quantification of the electrophoretically separated soluble proteins, mean +/- SEM MAP2 content in the hippocampus (14.4 +/- 1.8 micrograms/mg protein) was depleted (5.4 +/- 0.5 micrograms/mg, p less than 0.01) 4 days after ischemia; this depletion was significantly inhibited by 1 or 10 mg nilvadipine/kg/day [14].
  • Furthermore, KB-5666 dose-dependently prevented a marked decrease in microtubule-associated protein 2 immunoreactivity in the dendritic fields of the CA1 pyramidal cells after ischemia [15].
  • Selective toxicity of cocaine on neurons was paralleled by a concomitant decrease of the culture content in microtubule-associated protein 2 (MAP2), a neuronal marker measured by solid-phase immunoassay [16].

Biological context of MAP2


Anatomical context of MAP2

  • MARK phosphorylates the microtubule-associated proteins tau, MAP2, and MAP4 on their microtubule-binding domain, causing their dissociation from microtubules and increased microtubule dynamics [22].
  • Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia [17].
  • In five of the six subjects with schizophrenia, prominent and specific alterations were found in the distribution of two microtubule-associated proteins, MAP2 and MAP5, which were anatomically selective for the subiculum and entorhinal cortex [17].
  • The colocalization of MAP2 and tau in growth structures recapitulated their codistribution in developing neurites [23].
  • Similar multimeric tubulin-binding domains in other proteins of the MAP2 class, including tau in axons and MAP4 in glial cells, may play the same role in the development and support of asymmetric cell morphology [24].

Associations of MAP2 with chemical compounds


Physical interactions of MAP2


Enzymatic interactions of MAP2


Co-localisations of MAP2


Regulatory relationships of MAP2

  • Interestingly, the EGF-stimulated MAP2 kinase activity was sensitive to micromolar concentrations of free Ca2+; it was inhibited 50% by 0.5 microM Ca2+ and almost totally inhibited by 2 microM Ca2+ [36].
  • Spindle-shaped cells not associated with the chains were labeled for the PDGF-alpha receptor and often coexpressed MAP2 neuronal isoforms [37].
  • Overexpression of CPEB in neurons promotes the transport of CPE-containing endogenous MAP2 mRNA to dendrites, whereas overexpression of a mutant CPEB that is defective for interaction with molecular motors inhibits this transport [38].
  • Mapmodulin inhibits the initial rate of MAP2 binding to microtubules, a property that may allow mapmodulin to displace MAPs from the path of organelles translocating along microtubules [39].
  • Treatment of peripheral blood neutrophils or terminally differentiated HL-60 cells with GM-CSF induced a rapid and dose-dependent increase in MAP2 kinase activity [40].

Other interactions of MAP2

  • Double-immunolabelling for poly(ADP-ribose) and markers of neuronal, astrocytic and microglial differentiation (MAP2, GFAP and CD68, respectively) showed many of the cells containing poly(ADP-ribose) to be neurons [41].
  • To date, only two MAP family members, MAP1A and MAP2, have been well characterized and studied in mammals [42].
  • Double fluorescent laser scanning microscopy showed that GFAP and MAP2 labeled different tumor cell populations [3].
  • Immunoblots confirmed a loss of MAP2 and MAP1B within a few hours after death [43].
  • These neuronal precursors expressed betaIII tubulin, the dendritic marker MAP2 and the presynaptic marker synaptophysin after 7 days of in vitro maturation [44].

Analytical, diagnostic and therapeutic context of MAP2


  1. Co-expression of low molecular weight neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines. Tlhyama, T., Lee, V.M., Trojanowski, J.Q. Am. J. Pathol. (1993) [Pubmed]
  2. An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated beta-tubulin isotype. Caccamo, D.V., Herman, M.M., Frankfurter, A., Katsetos, C.D., Collins, V.P., Rubinstein, L.J. Am. J. Pathol. (1989) [Pubmed]
  3. Distinct expression pattern of microtubule-associated protein-2 in human oligodendrogliomas and glial precursor cells. Blümcke, I., Becker, A.J., Normann, S., Hans, V., Riederer, B.M., Krajewski, S., Wiestler, O.D., Reifenberger, G. J. Neuropathol. Exp. Neurol. (2001) [Pubmed]
  4. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein. Lim, R.W., Halpain, S. J. Biol. Chem. (2000) [Pubmed]
  5. Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Law, A.J., Weickert, C.S., Hyde, T.M., Kleinman, J.E., Harrison, P.J. The American journal of psychiatry. (2004) [Pubmed]
  6. MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis. Derksen, M.J., Ward, N.L., Hartle, K.D., Ivanco, T.L. Neurobiology of learning and memory (2007) [Pubmed]
  7. Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats. Iwata, M., Shirayama, Y., Ishida, H., Kawahara, R. Neuroscience (2006) [Pubmed]
  8. Long-term alcohol self-administration and alcohol withdrawal differentially modulate microtubule-associated protein 2 (MAP2) gene expression in the rat brain. Putzke, J., De Beun, R., Schreiber, R., De Vry, J., Tölle, T.R., Zieglgänsberger, W., Spanagel, R. Brain Res. Mol. Brain Res. (1998) [Pubmed]
  9. Role of microtubule-associated proteins in the control of microtubule assembly. Maccioni, R.B., Cambiazo, V. Physiol. Rev. (1995) [Pubmed]
  10. Inhibition of MAP2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Dinsmore, J.H., Solomon, F. Cell (1991) [Pubmed]
  11. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Roy, N.S., Wang, S., Jiang, L., Kang, J., Benraiss, A., Harrison-Restelli, C., Fraser, R.A., Couldwell, W.T., Kawaguchi, A., Okano, H., Nedergaard, M., Goldman, S.A. Nat. Med. (2000) [Pubmed]
  12. The role of early Ca2+ influx in the pathogenesis of delayed neuronal death after brief forebrain ischemia in gerbils. Nakamura, K., Hatakeyama, T., Furuta, S., Sakaki, S. Brain Res. (1993) [Pubmed]
  13. Microtubule-associated proteins: a monoclonal antibody to MAP2 binds to differentiated neurons. Izant, J.G., McIntosh, J.R. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  14. Nilvadipine attenuates ischemic degradation of gerbil brain cytoskeletal proteins. Kuwaki, T., Satoh, H., Ono, T., Shibayama, F., Yamashita, T., Nishimura, T. Stroke (1989) [Pubmed]
  15. Prevention of hippocampus neuronal damage in ischemic gerbils by a novel lipid peroxidation inhibitor (quinazoline derivative). Hara, H., Kogure, K. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  16. Selective neuronal toxicity of cocaine in embryonic mouse brain cocultures. Nassogne, M.C., Evrard, P., Courtoy, P.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  17. Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Arnold, S.E., Lee, V.M., Gur, R.E., Trojanowski, J.Q. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  18. Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. Northwood, I.C., Gonzalez, F.A., Wartmann, M., Raden, D.L., Davis, R.J. J. Biol. Chem. (1991) [Pubmed]
  19. Neurite extension in central neurons: a novel role for the receptor tyrosine kinases Ror1 and Ror2. Paganoni, S., Ferreira, A. J. Cell. Sci. (2005) [Pubmed]
  20. MspI RFLP for microtubule associated protein-2 (MAP2). Alberts, M.J., Kandt, R.S., Pericak-Vance, M.A., Bebout, J., Speer, M.C., Siddique, T.S., Yamaoka, L., Hung, W.Y., Gaskell, P.C., Roses, A.D. Nucleic Acids Res. (1991) [Pubmed]
  21. PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. Goedert, M., Baur, C.P., Ahringer, J., Jakes, R., Hasegawa, M., Spillantini, M.G., Smith, M.J., Hill, F. J. Cell. Sci. (1996) [Pubmed]
  22. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E.M., Mandelkow, E. Cell (1997) [Pubmed]
  23. Microtubular reorganization and dendritic growth response in Alzheimer's disease. McKee, A.C., Kowall, N.W., Kosik, K.S. Ann. Neurol. (1989) [Pubmed]
  24. Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells. Edson, K., Weisshaar, B., Matus, A. Development (1993) [Pubmed]
  25. Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP2. Laurine, E., Lafitte, D., Grégoire, C., Sérée, E., Loret, E., Douillard, S., Michel, B., Briand, C., Verdier, J.M. J. Biol. Chem. (2003) [Pubmed]
  26. Identification of a novel microtubule-binding domain in microtubule-associated protein 1A (MAP1A). Cravchik, A., Reddy, D., Matus, A. J. Cell. Sci. (1994) [Pubmed]
  27. Ephrin-B1 promotes dendrite outgrowth on cerebellar granule neurons. Moreno-Flores, M.T., Martín-Aparicio, E., Avila, J., Díaz-Nido, J., Wandosell, F. Mol. Cell. Neurosci. (2002) [Pubmed]
  28. Isolation of a phosphorylated soluble tau fraction from Alzheimer's disease brain. Ledesma, M.D., Avila, J., Correas, I. Neurobiol. Aging (1995) [Pubmed]
  29. Characterization of a mitogen-activated, Ca2+-sensitive microtubule-associated protein-2 kinase. Hoshi, M., Nishida, E., Sakai, H. Eur. J. Biochem. (1989) [Pubmed]
  30. Non-neuronal 210 x 10(3) Mr microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of neuronal MAP2 and tau. Chapin, S.J., Bulinski, J.C. J. Cell. Sci. (1991) [Pubmed]
  31. Phosphorylation of the regulatory subunit of type II beta cAMP-dependent protein kinase by cyclin B/p34cdc2 kinase impairs its binding to microtubule-associated protein 2. Keryer, G., Luo, Z., Cavadore, J.C., Erlichman, J., Bornens, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  32. Tau complexes with phospholipase C-gamma in situ. Jenkins, S.M., Johnson, G.V. Neuroreport (1998) [Pubmed]
  33. Localization of specific epitopes on human microtubule-associated protein 2. Kalcheva, N., Albala, J.S., Binder, L.I., Shafit-Zagardo, B. J. Neurochem. (1994) [Pubmed]
  34. Fyn phosphorylates human MAP-2c on tyrosine 67. Zamora-Leon, S.P., Bresnick, A., Backer, J.M., Shafit-Zagardo, B. J. Biol. Chem. (2005) [Pubmed]
  35. Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson's disease substantia nigra brain tissues. D'Andrea, M.R., Ilyin, S., Plata-Salaman, C.R. Neurosci. Lett. (2001) [Pubmed]
  36. Activation of a Ca2+-inhibitable protein kinase that phosphorylates microtubule-associated protein 2 in vitro by growth factors, phorbol esters, and serum in quiescent cultured human fibroblasts. Hoshi, M., Nishida, E., Sakai, H. J. Biol. Chem. (1988) [Pubmed]
  37. Emergence of oligodendrocytes from human neural spheres. Murray, K., Dubois-Dalcq, M. J. Neurosci. Res. (1997) [Pubmed]
  38. Facilitation of dendritic mRNA transport by CPEB. Huang, Y.S., Carson, J.H., Barbarese, E., Richter, J.D. Genes Dev. (2003) [Pubmed]
  39. Mapmodulin: a possible modulator of the interaction of microtubule-associated proteins with microtubules. Ulitzur, N., Humbert, M., Pfeffer, S.R. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  40. Granulocyte-macrophage colony-stimulating factor activates microtubule-associated protein 2 kinase in neutrophils via a tyrosine kinase-dependent pathway. Raines, M.A., Golde, D.W., Daeipour, M., Nel, A.E. Blood (1992) [Pubmed]
  41. Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Love, S., Barber, R., Wilcock, G.K. Brain (1999) [Pubmed]
  42. MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Leszczyniecka, M., Bhatia, U., Cueto, M., Nirmala, N.R., Towbin, H., Vattay, A., Wang, B., Zabludoff, S., Phillips, P.E. Oncogene (2006) [Pubmed]
  43. Postmortem changes in the levels and localization of microtubule-associated proteins (tau, MAP2 and MAP1B) in the rat and human hippocampus. Schwab, C., Bondada, V., Sparks, D.L., Cahan, L.D., Geddes, J.W. Hippocampus. (1994) [Pubmed]
  44. Differentiation of human adult skin-derived neuronal precursors into mature neurons. Gingras, M., Champigny, M.F., Berthod, F. J. Cell. Physiol. (2007) [Pubmed]
  45. In vitro assembly of Alzheimer-like filaments. How a small cluster of charged residues in Tau and MAP2 controls filament morphology. DeTure, M.A., Di Noto, L., Purich, D.L. J. Biol. Chem. (2002) [Pubmed]
  46. Neuropil threads are collinear with MAP2 immunostaining in neuronal dendrites of Alzheimer brain. Ashford, J.W., Soultanian, N.S., Zhang, S.X., Geddes, J.W. J. Neuropathol. Exp. Neurol. (1998) [Pubmed]
  47. Cytoskeletal immunohistochemistry of central neurocytomas. Hessler, R.B., Lopes, M.B., Frankfurter, A., Reidy, J., VandenBerg, S.R. Am. J. Surg. Pathol. (1992) [Pubmed]
  48. Aluminum-induced neuropathology: transient changes in microtubule-associated proteins. Muma, N.A., Singer, S.M. Neurotoxicology and teratology. (1996) [Pubmed]
  49. Microtubule-associated protein-2 immunoreactivity: a useful tool in the differential diagnosis of low-grade neuroepithelial tumors. Blümcke, I., Müller, S., Buslei, R., Riederer, B.M., Wiestler, O.D. Acta Neuropathol. (2004) [Pubmed]
WikiGenes - Universities