The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

High glucose-induced inhibition of 2-deoxyglucose uptake is mediated by cAMP, protein kinase C, oxidative stress and mitogen-activated protein kinases in mouse embryonic stem cells.

Abnormally high glucose levels may play an important role in early embryo development and function. In the present study, we investigated the effect of high glucose on 2-deoxyglucose (2-DG) uptake and its related signalling pathway in mouse embryonic stem (ES) cells. 2. 2-Deoxyglucose uptake was maximally inhibited by 25 mmol/L glucose after 24 h treatment. However, 25 mmol/L mannitol and dextran did not affect 2-DG uptake. Indeed, 25 mmol/L glucose decreased GLUT-1 mRNA and protein levels. The glucose (25 mmol/L)-induced inhibition of 2-DG uptake was blocked by pertussis toxin (a G(i)-protein inhibitor; 2 ng/mL), SQ 22,536 (an adenylate cyclase inhibitor; 10(-6) mol/L) and the protein kinase (PK) A inhibitor myristoylated PKI amide-(14-22) (10(-6) mol/L). Indeed, 25 mmol/L glucose increased intracellular cAMP content. 3. Furthermore, 25 mmol/L glucose-induced inhibition of 2-DG uptake was prevented by 10(-4) mol/L neomycin or 10(-6) mol/L U 73,122 (phospholipase C (PLC) inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase (PK) C inhibitors). At 25 mmol/L, glucose increased translocation of PKC from the cytoplasmic fraction to the membrane fraction. The 25 mmol/L glucose-induced inhibition of 2-DG uptake and GLUT-1 protein levels was blocked by SQ 22,536, bisindolylmaleimide I or combined treatment. In addition, 25 mmol/L glucose increased cellular reactive oxygen species and the glucose-induced inhibition of 2-DG uptake were blocked by the anti-oxidants N-acetylcysteine (NAC; 10(-5) mol/L) or taurine (2 yen 10(-3) mol/L). 4. Glucose (25 mmol/L) activated p38 mitogen- activated protein kinase ( MAPK) and p44/42 MAPK. Staurosporine (10(-6) mol/L), NAC (10(-5) mol/L) and PD 98059 (10(-7) mol/L) attenuated the phosphorylation of p44/42 MAPK. Both SB 203580 (a p38 MAPK inhibitor; 10(-7) mol/L) and PD 98059 (a p44/42 MAPK inhibitor; 10(-7) mol/L) blocked 25 mmol/L glucose-induced inhibition of 2-DG uptake. 5. In conclusion, high glucose inhibits 2-DG uptake through cAMP, PLC/PKC, oxidative stress or MAPK in mouse ES cells.[1]

References

 
WikiGenes - Universities