The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cluster analysis and gene expression profiles: A cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy.

We investigated gene expression patterns and functional classifications regarding the clusters of human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs)-which possess a multipotent ability-because little is known about the precise moleculobiological clues by which these cells activate their differentiating ability or functionality to eventually form dentin and bone, respectively. We first verified the expressions of the alkaline phosphatase (ALP) gene, dentin matrix protein 1 (DMP-1), and dentinsialophosphoprotein (DSPP) by real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and consequently discovered the high expressions of these genes. Total RNA was also followed by hybridization with a human microarray system consisting of 12,814 genes. Analyses of gene expression patterns indicated several genes which encode extracellular matrix components, cell adhesion molecules, growth factors, and transcription regulators. Functional and clustering analyses of differences in gene expression levels revealed cell signaling, cell communication, or cell metabolism. In the future, information on the gene expression patterns of hDPSCs and hMSCs might be useful in determining the detailed functional roles of the relevant genes and applicable to stem cell therapies, and these cells could also be used as multipotent cell sources for gene technology and tissue engineering technology.[1]

References

 
WikiGenes - Universities