The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The Zebrafish fade out Mutant: A Novel Genetic Model for Hermansky-Pudlak Syndrome.

PURPOSE: To characterize retinal morphology and visual system function in the zebrafish mutant fade out (fad) and to establish the mutant as a lower vertebrate model for Hermansky-Pudlak syndrome ( HPS). METHODS: Retinal morphology of fad larvae was examined between 3 and 9 days postfertilization (dpf) by standard histology, transmission electron microscopy, and immunohistochemistry examination. Apoptotic cells were visualized by TdT-mediated dUTP nick-end labeling (TUNEL) staining. Visual system function was probed by electroretinography and behavioral assessment by optokinetic response measurements. Blood clotting was evaluated by time to occlusion testing of blood vessels as an arterial thrombosis assay. The chromosomal location of fad was determined by simple sequence-length polymorphism mapping. Genomic fragments of candidate genes were cloned by standard molecular techniques and mapped to the zebrafish genome by radiation hybrid mapping. RESULTS: Mutant fad larvae are hypopigmented and show structural defects in the outer retina. Melanosomes of these larvae in the retinal pigment epithelium are hypopigmented, generally smaller, and progressively reduced in number compared to nonmutant larvae. Progressive microvilli protrusions into the photoreceptor cell layer are not detectable, and photoreceptor outer segments get shorter and are misaligned. Photoreceptors subsequently undergo apoptosis, with a peak of cell death at 6 dpf. Electrical responses of the retina and visual performance are severely reduced. Blood clotting is prolonged in mutant fad larvae. Genomic mapping of fad reveals distinct genomic positions of the mutant gene from known human HPS genes. CONCLUSIONS: The fad mutant shows syndromic defects in pigmentation, outer retinal structure and function, and blood clotting. This syndrome is characteristic of Hermansky-Pudlak syndrome ( HPS), making fad a novel genetic model of HPS. The gene does not cosegregate with the known human HPS genes, suggesting a novel molecular cause of HPS.[1]

References

  1. The Zebrafish fade out Mutant: A Novel Genetic Model for Hermansky-Pudlak Syndrome. Bahadori, R., Rinner, O., Schonthaler, H.B., Biehlmaier, O., Makhankov, Y.V., Rao, P., Jagadeeswaran, P., Neuhauss, S.C. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
 
WikiGenes - Universities