The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Melanosomes


High impact information on Melanosomes

  • Griscelli syndrome (GS, MIM 214450), a rare, autosomal recessive disorder, results in pigmentary dilution of the skin and the hair, the presence of large clumps of pigment in hair shafts and an accumulation of melanosomes in melanocytes [6].
  • Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice [7].
  • Some of the clones consisted of cells able to translocate their melanosomes in response to epinephrine, melatonin, or adenosine 3', 5'-monophosphate [8].
  • Hermansky-Pudlak syndrome defines a group of genetic disorders characterized by defects in organelles of the endosomal-lysosomal system, most notably melanosomes and platelet-dense granules [9].
  • Expression of siRNA-resistant Slp2-a (Slp2-a(SR)) rescued the peripheral dilution of melanosomes induced by Slp2-a siRNAs, but Slp2-a(SR) mutants, which failed to interact with either phospholipids or Rab27A, did not [10].

Chemical compound and disease context of Melanosomes


Biological context of Melanosomes


Anatomical context of Melanosomes

  • Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles [20].
  • A much slower dispersion (mean time of onset, 19.0 +/- 5.0 min) of melanosomes was observed when the microelectrode was positioned adjacent to a melanophore, and much larger quantities of cyclic AMP were released [21].
  • We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex [22].
  • Taken together, these observations suggest that HPS1 and HPS4 are components of a protein complex that regulates the intracellular localization of lysosomes and late endosomes and may function in a BLOC-1-dependent pathway for melanosome biogenesis [23].
  • However, this part of the K5 head domain is likely to protrude on the filament surface, perhaps leading to additional aberrations in intermediate filament architecture and/or in melanosome distribution that are seen ultrastructurally in patients with the mutation [24].

Associations of Melanosomes with chemical compounds

  • The melanosome DNA could not be distinguished from nuclear and mitochondrial DNA by the amount of tritiated thymidine incorporated [25].
  • Low-density sucrose fractions were found by electron microscopy to be enriched in stage I and stage II melanosomes, and these fractions were further separated and purified by free flow electrophoresis [26].
  • In melanophores, light increases the intracellular level of inositol trisphosphate and causes the dispersion of melanosomes [27].
  • The content of free and protein-bound DOPA and 5-S-cysteinyldopa varied greatly in B16, HP, and sepia melanosomes and was unrelated to melanin content [28].
  • This transport system is critical to the function of the melanosome since tyrosine is the essential substrate required for the synthesis of the pigment melanin [29].

Gene context of Melanosomes


Analytical, diagnostic and therapeutic context of Melanosomes


  1. Pathological and functional amyloid formation orchestrated by the secretory pathway. Huff, M.E., Balch, W.E., Kelly, J.W. Curr. Opin. Struct. Biol. (2003) [Pubmed]
  2. Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Gissen, P., Johnson, C.A., Gentle, D., Hurst, L.D., Doherty, A.J., O'Kane, C.J., Kelly, D.A., Maher, E.R. Hum. Mol. Genet. (2005) [Pubmed]
  3. Defects in the cappuccino (cno) gene on mouse chromosome 5 and human 4p cause Hermansky-Pudlak syndrome by an AP-3-independent mechanism. Gwynn, B., Ciciotte, S.L., Hunter, S.J., Washburn, L.L., Smith, R.S., Andersen, S.G., Swank, R.T., Dell'Angelica, E.C., Bonifacino, J.S., Eicher, E.M., Peters, L.L. Blood (2000) [Pubmed]
  4. The Hermansky-Pudlak syndrome (HPS) protein is part of a high molecular weight complex involved in biogenesis of early melanosomes. Oh, J., Liu, Z.X., Feng, G.H., Raposo, G., Spritz, R.A. Hum. Mol. Genet. (2000) [Pubmed]
  5. Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome. Petrescu, S.M., Petrescu, A.J., Titu, H.N., Dwek, R.A., Platt, F.M. J. Biol. Chem. (1997) [Pubmed]
  6. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Ménasché, G., Pastural, E., Feldmann, J., Certain, S., Ersoy, F., Dupuis, S., Wulffraat, N., Bianchi, D., Fischer, A., Le Deist, F., de Saint Basile, G. Nat. Genet. (2000) [Pubmed]
  7. Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Liu, X., Ondek, B., Williams, D.S. Nat. Genet. (1998) [Pubmed]
  8. Induction of melanized cells from a goldfish erythrophoroma: isolation of pigment translocation variants. Matsumoto, J., Lynch, T.J., Grabowski, S.M., Taylor, J.D., Tchen, T.T. Science (1982) [Pubmed]
  9. The building BLOC(k)s of lysosomes and related organelles. Dell'Angelica, E.C. Curr. Opin. Cell Biol. (2004) [Pubmed]
  10. Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Kuroda, T.S., Fukuda, M. Nat. Cell Biol. (2004) [Pubmed]
  11. Inability of murine melanoma melanosomal "tyrosinase" (L-dopa oxidase) to oxidize tyrosine to melanin in polyacrylamide gel systems. Edelstein, L.M., Cariglia, N., Okun, M.R., Patel, R.P., Smucker, D. J. Invest. Dermatol. (1975) [Pubmed]
  12. Selective aberration and pigment loss in melanosomes of malignant melanoma cells in vitro by glycosylation inhibitors: premelanosomes as glycoprotein. Mishima, Y., Imokawa, G. J. Invest. Dermatol. (1983) [Pubmed]
  13. Identification of a mammalian melanosomal matrix glycoprotein. Orlow, S.J., Zhou, B.K., Boissy, R.E., Pifko-Hirst, S. J. Invest. Dermatol. (1993) [Pubmed]
  14. Small Gtpase rab3A is associated with melanosomes in melanoma cells. Araki, K., Horikawa, T., Chakraborty, A.K., Nakagawa, K., Itoh, H., Oka, M., Funasaka, Y., Pawelek, J., Ichihashi, M. Pigment Cell Res. (2000) [Pubmed]
  15. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. Berson, J.F., Theos, A.C., Harper, D.C., Tenza, D., Raposo, G., Marks, M.S. J. Cell Biol. (2003) [Pubmed]
  16. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Provance, D.W., Wei, M., Ipe, V., Mercer, J.A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  17. Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Menasche, G., Feldmann, J., Houdusse, A., Desaymard, C., Fischer, A., Goud, B., de Saint Basile, G. Blood (2003) [Pubmed]
  18. The role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells. Futter, C.E., Ramalho, J.S., Jaissle, G.B., Seeliger, M.W., Seabra, M.C. Mol. Biol. Cell (2004) [Pubmed]
  19. Lysosomal hydrolases are present in melanosomes and are elevated in melanizing cells. Diment, S., Eidelman, M., Rodriguez, G.M., Orlow, S.J. J. Biol. Chem. (1995) [Pubmed]
  20. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Kantheti, P., Qiao, X., Diaz, M.E., Peden, A.A., Meyer, G.E., Carskadon, S.L., Kapfhamer, D., Sufalko, D., Robinson, M.S., Noebels, J.L., Burmeister, M. Neuron (1998) [Pubmed]
  21. Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore. Geschwind, I.I., Horowitz, J.M., Mikuckis, G.M., Dewey, R.D. J. Cell Biol. (1977) [Pubmed]
  22. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. Sprong, H., Degroote, S., Claessens, T., van Drunen, J., Oorschot, V., Westerink, B.H., Hirabayashi, Y., Klumperman, J., van der Sluijs, P., van Meer, G. J. Cell Biol. (2001) [Pubmed]
  23. Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Nazarian, R., Falcón-Pérez, J.M., Dell'Angelica, E.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  24. The genetic basis of epidermolysis bullosa simplex with mottled pigmentation. Uttam, J., Hutton, E., Coulombe, P.A., Anton-Lamprecht, I., Yu, Q.C., Gedde-Dahl, T., Fine, J.D., Fuchs, E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. Association of DNA with melanin granules. Schneider, W.C., Shelton, E., Kuff, E.L. J. Natl. Cancer Inst. (1975) [Pubmed]
  26. A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Kushimoto, T., Basrur, V., Valencia, J., Matsunaga, J., Vieira, W.D., Ferrans, V.J., Muller, J., Appella, E., Hearing, V.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  27. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Isoldi, M.C., Rollag, M.D., Castrucci, A.M., Provencio, I. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  28. Characterization of melanogenesis and morphogenesis of melanosomes by physicochemical properties of melanin and melanosomes in malignant melanoma. Jimbow, K., Miyake, Y., Homma, K., Yasuda, K., Izumi, Y., Tsutsumi, A., Ito, S. Cancer Res. (1984) [Pubmed]
  29. Characterization of a melanosomal transport system in murine melanocytes mediating entry of the melanogenic substrate tyrosine. Potterf, S.B., Muller, J., Bernardini, I., Tietze, F., Kobayashi, T., Hearing, V.J., Gahl, W.A. J. Biol. Chem. (1996) [Pubmed]
  30. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. Barral, D.C., Ramalho, J.S., Anders, R., Hume, A.N., Knapton, H.J., Tolmachova, T., Collinson, L.M., Goulding, D., Authi, K.S., Seabra, M.C. J. Clin. Invest. (2002) [Pubmed]
  31. Identification of an organelle receptor for myosin-Va. Wu, X.S., Rao, K., Zhang, H., Wang, F., Sellers, J.R., Matesic, L.E., Copeland, N.G., Jenkins, N.A., Hammer, J.A. Nat. Cell Biol. (2002) [Pubmed]
  32. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). Jiménez-Cervantes, C., Solano, F., Kobayashi, T., Urabe, K., Hearing, V.J., Lozano, J.A., García-Borrón, J.C. J. Biol. Chem. (1994) [Pubmed]
  33. Rab27a is an essential component of melanosome receptor for myosin Va. Wu, X., Wang, F., Rao, K., Sellers, J.R., Hammer, J.A. Mol. Biol. Cell (2002) [Pubmed]
  34. The inhibition of early N-glycan processing targets TRP-2 to degradation in B16 melanoma cells. Negroiu, G., Dwek, R.A., Petrescu, S.M. J. Biol. Chem. (2003) [Pubmed]
  35. Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes. Gibbs, D., Azarian, S.M., Lillo, C., Kitamoto, J., Klomp, A.E., Steel, K.P., Libby, R.T., Williams, D.S. J. Cell. Sci. (2004) [Pubmed]
  36. Myosin V colocalizes with melanosomes and subcortical actin bundles not associated with stress fibers in human epidermal melanocytes. Lambert, J., Onderwater, J., Vander Haeghen, Y., Vancoillie, G., Koerten, H.K., Mommaas, A.M., Naeyaert, J.M. J. Invest. Dermatol. (1998) [Pubmed]
  37. All-trans retinoic acid induces differentiation and apoptosis of murine melanocyte precursors with induction of the microphthalmia-associated transcription factor. Watabe, H., Soma, Y., Ito, M., Kawa, Y., Mizoguchi, M. J. Invest. Dermatol. (2002) [Pubmed]
  38. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Hakozaki, T., Minwalla, L., Zhuang, J., Chhoa, M., Matsubara, A., Miyamoto, K., Greatens, A., Hillebrand, G.G., Bissett, D.L., Boissy, R.E. Br. J. Dermatol. (2002) [Pubmed]
WikiGenes - Universities